
Netica-J Manual
Version 2.21 and Higher

Java Version of Netica API
Norsys Software Corp

2 NETICA API JAVA VERSION 2.21

Netica-J Reference Manual
Version 2.21
June 11, 2002

Copyright 2002 by Norsys Software Corp.

This document may be copied and stored freely, provided it is duplicated in its entirety, without
modification, and including the copyright notice.

Published by:
Norsys Software Corp.
2315 Dunbar Street
Vancouver, BC, Canada
V6R 3N1
www.norsys.com

Netica and Norsys are registered trademarks of Norsys Software Corp.
Microsoft, Windows, Windows NT and MS-DOS are registered trademarks of Microsoft, Inc.
Sun and JAVA are registered trademark of Sun Microsystems, Inc.
Unicode is a trademark of Unicode, Inc.
PostScript and PDF are registered trademarks of Adobe Systems, Inc.
Other brands and product names are trademarks of their respective holders.

While great precaution has been taken in the preparation of this manual, we assume no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting from the use of the information
contained herein.

JAVA VERSION 2.21 NETICA API 3

1. Introduction
This reference manual is for Netica-J, the Java version of the Netica API Programmer’s Library.
It is meant to be used in conjunction with the onscreen Netica-J javadocs reference (see below).
Netica-J is a set of Java classes and an accompanying Java Native Interface (JNI) library that
allow a Java developer to use the Netica API Programmer’s Library.

This manual assumes that you are familiar with the Java programming language. It also assumes
familiarity with Bayes nets (Bayesian belief networks) or influence diagrams. Questions and
comments about material in this manual may be sent to netica-j@norsys.com.

1.1. Netica-J Features
• A complete implementation of the Netica API in Java.
• A clean object-oriented design.
• A comprehensive installation guide and user's manual.
• Sample applications to get you started.
• Source code for dozens of powerful utility functions in "Extra" classes: NetEx, NodeEx,

and NodeListEx.
• High performance, relying on the same ultra-reliable industrial-strength computation

engine in Netica's C-API (with hundreds of fielded applications over the past five years).
• Written by Java developers for Java developers. For instance, it:

• Possesses a complete and thorough javadocs.
• Uses Java's exception handling mechanism in the natural way.
• Supports event listening by any Java object for events such as the

creation, deletion, duplication, etc. of Nets or Nodes
• Supports user data fields for any Serializable Java object
• Supports multiple threads
• Supports standard Java I/O streams

• Thoroughly tested and reliable.
• Comes at no extra cost with Netica API for other languages. Works with your existing

Netica-API license, with the same rights, restrictions, and support arrangements.
• Download it from: http://www.norsys.com/netica-j.html
• In a version to be available soon, it will have an interface to Netica Application, allowing

you to control the powerful GUI from Java, and vice-versa.

1.2. Netica Programmer's Library
The Netica Programmer’s Library, also known as the Netica API, is described thoroughly in the
Netica API Programmer's Library Reference Manual, C Version, which is available for free
download from http://www.norsys.com/netica_api.html . If you have never programmed Netica
before, you may want to read the first chapters of that manual first, to familiarize yourself with
the general operation of Netica before venturing to use Netica-J.

http://www.norsys.com/netica-j.html
http://www.norsys.com/netica_api.html

4 NETICA API JAVA VERSION 2.21

1.3. Files Included
The following files are included in the distribution of Netica-J, the Java version of Netica API:

Directory File Description

doc • NeticaJ_Man.pdf
• javadocs\
• LicAgree.txt

• this file
• the javadocs directory for Netica-J
• a legal document relating to the use of Netica API

bin • NeticaJ.jar
• NeticaJ.dll
 (libNeticaJ.so)
 (libNeticaJ.jnilib)
• Netica.dll
 (libnetica.a)

• the Java class library that defines Netica-J
• the Java-to-Native interface library (Windows only)
 “ “ “ (Unix/Linux)
 “ “ “ (Mac OS X)
• the native Netica API library (Windows only)
 “ “ “ (Mac OS X only)

src/neticaEx/ • NetEx.java
• NodeEx.java
• NodeListEx.java

• A class containing useful Net methods
• “ “ Node “
• “ “ NodeList “

src/neticaEx/
aliases

• Net.java
• Node.java
• NodeList.java

• A convenience class that renames NodeEx as Node
• “ “ “ NetEx as Net
• “ “ “ NodeListEx as NodeList

demo • Demo.java
• compile.bat (.sh)

• run.bat (.sh)

• a sample application to test your Netica-J installation
• a sample batch file for compiling Demo.java
 (.bat for Windows, .sh for Unix/Linux/MacOSX)
• a sample batch file for running Demo.class
 (.bat for Windows, .sh for Unix/Linux/MacOSX)

examples • BuildNet.java
• DoInference.java
• SimulateCases.java
• LearnCPTs.java
• AsiaEx.dne
• compile.bat (.sh)
• run.bat (.sh)

• demonstrates building a Bayes net from scratch
• demonstrates doing inference
• demonstrates creating case instances that statistically derive from a given net
• demonstrates learning from cases
• an example net file required by SimulateCases.java and LearnCPTs.java
• a sample batch file for compiling all the java files in this directory
• a sample batch file for running all the java programs in this directory, after they have

been compiled.

The Netica-J directory structure

The doc\ directory contains manuals, javadocs, license agreements, and any other documentation.
The bin\ directory contains the Netica-J runtime software without which Netica-J will not function.
The src\ directory contains source software that is distributed with Netica-J. You are free to examine,
compile, or copy from these source files. We suggest that you leave the original files unmodified. These
functions may change in future version of Netica.
The demo\ directory contains a simple program that should be compiled and run after installation to
establish that your Netica-J system is correctly installed and ready to use.
The examples\ directory contains assorted sample data and source code that you may examine, copy, and
edit freely.

JAVA VERSION 2.21 NETICA API 5

1.4. License Agreement
Before using Netica-J, make sure you accept the license agreement that is included with this
package as file LicAgree.txt.

If you have purchased the C-version of Netica API, you are entitled to the same rights and
privileges with this Java version, and the license password you were issued will work identically
with Netica-J. The license-password is provided to the constructor for Environ. For example:

Environ env = new Environ (“your unique license string”);

If you do not have a license, then you can simply supply null to the Environ constructor, in
which case Netica-J will be fully functional, except for the size of the Nets it can manage, and the
number of cases it can learn from at one time.

6 NETICA API JAVA VERSION 2.21

1.5. Getting Started

Recommended Installation steps:

1. A Java-2 platform is required. There are many suppliers, for example SUN
Microsystems at http://java.sun.com/products/

2. Download Netica-J from the Norsys ftp site:
ftp://norsys.com/pub/users/norsys/dl/NeticaJ_Win.zip (or the version for your
OS/platform)

3. Unzip it, and it will form a directory called NeticaJ_221 (or the current version
number).

4. Test your installation with the Demo application provided.

a) Change to the demo\ directory and at the command line, type: compile.bat
(compile.sh on Unix/Linux/MacOS X). Or click on the compile.bat icon.
This will compile Demo.java and create Demo.class.

b) At the command line, type: run.bat (run.sh). Or click on the run.bat icon.
This will run Demo.class.

c) If it displays a welcome message, and does simple probabilistic inference without
declaring any errors, then your installation was probably successful.

5. Now that you have the example program running, you can duplicate the demo\
directory, replace Demo.java with your own source files, and you are ready to build
your own application. Don't forget to replace "null" in "new Environ(null)"
with your own license password, if you want to have the full functionality of Netica.

6. Demo.java, is a good starting point for developing your own applications. You may
wish to "cut-and-paste" from it. Similar examples showing how to build a net from
scratch, do inference, generate cases, and learn from cases are provided in the
examples\ directory.

7. If you are familiar with the Hugin or JavaBayes systems and would like information
on equivalent Netica functions, contact Norsys.

ftp://norsys.com/pub/users/norsys/dl/NeticaJ_Win.zip

JAVA VERSION 2.21 NETICA API 7

1.6. Complete Javadocs Reference
For javadocs-style documentation for Netica-J, simply point your browser at the index.html file
in the docs\javadocs\ directory. The javadocs very thoroughly document every class and every
function of the Netica API. You will find it an invaluable companion during development.

1.7. Customized Installation Considerations

Using Java IDEs (VisualAge, JBuilder, JDeveloper, Forte, etc.)

You must inform your IDE of the locations of the three library files: NeticaJ.dll
(libNeticaJ.so), NeticaJ.jar, and Netica.dll (libnetica.a). Assuming Netica-J was installed
at the following location on your filesystem:

Windows: C:\NeticaJ_221
Unix/Linux/MacOSX: /home/NeticaJ_221

1) NeticaJ.dll(libNeticaJ.so/.jnilib) must appear on the java library path. Typically this is done
 with a -D option to the JVM. For example:

Windows: java -Djava.library.path=C:\NeticaJ_221\bin

Unix/Linux/MacOSX: java -Djava.library.path=/home/NeticaJ_221/bin

2) NeticaJ.jar must appear on the java CLASSPATH. For example:
Windows: java -classpath C:\NeticaJ_221\bin\NeticaJ.jar

Unix/Linux/MacOSX: java -classpath /home/NeticaJ_221/bin/NeticaJ.jar

3) Windows Only: Netica.dll must appear on the Windows execution "path, so that Windows
can find it. For example:

Windows: set PATH=C:\NeticaJ_221\bin;%PATH%

1.8. Feedback welcome
We at Norsys have worked hard to make Netica-J a very high quality and robust package that is
easy and natural to use. If you have any ideas for how it can be improved, please send your
suggestions to: netica-j@norsys.com

1.9. Join the Netica-J Mailing List
If you would like to be notified of version updates and other news regarding Netica-J, please visit
https://www.norsys.com/mailing_list.html?interests=Netica-J and supply us with your e-mail
address. Mailings are infrequent.

8 NETICA API JAVA VERSION 2.21

2. Netica-J Package Design and Usage
This section outlines programming principles and issues as they relate to Netica-J's operation and
organization. If you are an experienced Java developer or are planning a sizeable development
effort with Netica-J, you will definitely want to read and understand this section before beginning
your design.

2.1. The "Ex" classes NetEx, NodeEx, and NodeListEx

The "Ex" classes inherit from their parent class (NodeEx extends Node, NetEx extends Net, etc).

They do not offer any additional constants or instance variables. All they offer is additional
functionality (the "Ex” stands for "Extra", “Example”, “External”, “Experimental”, and
“Excellent!”). These are utilities and convenience methods that were deemed useful, but not
basic enough to belong in the base class. Some of them are “Ex” methods because they are more
useful in source code form, so that you can customize them to your needs.

Because their Java source is included, the "Ex" classes are a good place to look for coding
examples. Indeed, many of the coding examples found in the javadocs are taken from the “Ex”
classes.

The “Ex” classes may change in future versions; methods may be added, removed or modified.
For this reason, you may want to keep copies of the Ex classes for future reference, or you may
want to copy out any methods you need to form your own extensions of the parent classes.

Since the “Ex” classes contain so many useful methods, many users will want to use the “Ex”
classes in place of the more basic parent classes. See Section 3, Inheritance, below, for
considerations when doing this.

The "Ex" classes are meant to be supported by the entire community of Netica-J users, so please
feel welcome to submit additional methods that you have found useful, or to suggest
improvements to the ones already there.

Some of the “Ex” class methods are static, while others are not. The basic criterion of choosing
to make a method static was whether that method could be thought of as a “standalone-utility”
that would be useful to have around even when you didn’t have an “Ex” object present. Since
none of the “Ex” classes define new state data, it is a trivial exercise to convert a static method to
be non-static or vice versa, should you prefer the alternate.

Because the “Ex” classes are so useful, many developers will want to use them directly. To make
this easy, their compiled classes have been included in the NeticaJ.jar distribution. All you need
do is import norsys.neticaEx.*; and you are ready to use them without the need to
compile your own versions of them.

Finally, as a convenience, we also supply in the norsys.neticaEx.aliases package, three wrapper
classes for NetEx, NodeEx, and NodeListEx, that are named Net, Node, and NodeList,
respectively. They allow you to use the base class names and still use the Ex classes. See
demo\Demo.java and examples\BuildNet.java for examples of how to use these convenience
classes.

JAVA VERSION 2.21 NETICA API 9

2.2. Java objects and native object peers

Since Netica-J is a JNI API, many of the Java objects created are “proxies” of their native or
“peer” counterpart objects internal to the core Netica binary. This is true of Environ, Net, Node,
NetTester, NeticaError, Sensitivity, and Streamer. The remaining Java classes (Generic,
NeticaEvent, NeticaException, NeticaListener, NodeList, User, Util, and VisualNode) do not
have peer equivalents. (Those of you familiar with the Netica C API may be surprised that
NodeList does not represent the native peer (nodelist_bn). This approach was chosen because
nodelist_bn is simply a convenience collection and Java already has excellent collection classes
that Java developers prefer to use.)

The existence of peer relationships is usually transparent to the Java developer. Netica-J was
designed to give the developer as much as possible the sense he/she is working in a 100% pure
Java environment.

The only situations where you need to know about peer objects is when considering finalization
and the cleanup of native resources (discussed in the Finalizers section, below), or when working
in a Model View Controller (MVC) environment where things could be happening to the native
model objects, and the Java environment is presenting but one view on that model. This can
happen, for instance, if Netica-J is communicating with peer objects inside Netica Application. A
user of Netica Application could delete a native node via the GUI, and the Java environment
would then find that its Node object had been disconnected from its peer. Netica-J has a standard
Java Publish-and-Subscribe mechanism (using NeticaEventListeners) for Java objects to be made
aware of such occurrences on the native side of the universe (see the Event Handling section,
below).

2.3. Exception Handling
Exception handling in Netica-J works in the normal Java way. If a method encounters an
unexpected situation it cannot resolve, a NeticaException is thrown. The vast majority of Netica-
J methods are able to throw a NeticaException. The toString() method of NeticaException details
the reason for the Exception. Hence, your typical try-catch block will look something like this:

try {
// call Netica-J methods

}
catch (NeticaException e) {

e.printStackTrace();
}

If you are familiar with the Netica C API, you will find that Netica-J’s exception handling
mechanism makes coding much more convenient and straightforward, since you no longer need
to actively check if an error has occurred. Netica-J looks after that for you, and will throw a
NeticaException automatically if any “serious” (“show stopper”) error occurs. By “serious” we
mean any errors of severity level ERROR_ERR or XXX_ERR which means the requested
operation was not completed.

Note that this means that WARNING_ERR and lower warnings do not result in a
NeticaException being thrown, so in those cases where such warnings can occur, you can actively
call the static method NeticaError.getWarnings after the method call, to determine if a

10 NETICA API JAVA VERSION 2.21

warning has occurred and, if so, what the warning was about. See the javadocs for
NeticaError.getWarnings for examples of this.

It is okay to call NeticaError.getWarnings only once in awhile, since warnings will
cumulate until the next getWarnings invocation, whereupon they are cleared from the
warnings list.

2.4. Inheritance of the Node and Net classes
Advanced users will want to create their own specialized Node and Net classes. To make this
task easier, and avoid the need for copy constructors, we have supplied you with a means to
inform Netica-J what class you would like it to use when constructing a Net or Node (for
example, when Netica-J is reading a net in from a file). The static methods:

Net.setConstructorClass (String className) and
Node.setConstructorClass (String className)

have been supplied for this purpose. All they require is that your Net or Node extension have a
default constructor. See their javadocs pages for examples.

Some users will want to use the words “Net” and “Node” for their own net and node classes, that
inherit from norsys.netica.Net and norsys.netica.Node, respectively. The supplied
files in src\neticaEx\aliases\ have examples of this. Although, overloading the terms “Net” and
“Node” like this is not difficult, namespace conflicts may arise. In general, if you explicitly
import your Node or Net class, the Java compiler will use those as the default classes.

2.5. Event Handling
If you wish your program to receive events, Netica-J has the ability to call your program when
such events occur.

Any Java object can choose to listen to Netica events by simply implementing the
NeticaEventListener interface and asking the node or net that generates the events to add itself to
that node or net’s listener list. The methods Node.addListener and Net.addListener
are supplied for this purpose. Since Node and Net objects are already NeticaEventListeners, they
each possess an eventOccurred(NeticaEvent) method. If you should choose to override
this method, it is important that you call the base class method
(super.eventOccurred(event);) in your method, so that this node or net will still be
able to handle delete events properly.

Future versions of Netica-J will include more types of events. If you have a request, please let us
know.

2.6. Multi-threading
If you are running Netica-J within a single process and are not creating more than one thread in
that process, you needn’t be bothered with this issue. The large majority of users will fall in this
category. However, if you are operating in a concurrent usage environment, then please read on.

JAVA VERSION 2.21 NETICA API 11

Netica-J’s approach to thread-safety is to share the responsibility of thread-safety with the
developer. Netica-J guarantees thread-safety whenever two threads are operating on two
separate nets, and also when two threads are operating on separate nodes, or sets of nodes (where
the sets share no member nodes), within the same net. However, in the case where two threads
can operate on the same node simultaneously, Netica-J does not guarantee thread safety, and so in
this case only, it is the responsibility of the developer to synchronize such code. This
compromise was made for efficiency reasons, since it is very likely you will need to synchronize
such code blocks anyhow, in order to avoid situations where one thread is changing a node that
another thread is simultaneously using.

2.7. Finalizers & Memory Management

For large networks and large node tables, Netica can consume large amounts of memory. Often
Java developers cease to worry about memory management, as the JVM’s garbage collector will
automatically collect Java objects that can no longer be referenced. However, the Java
specification does not require that a JVM actually call the garbage collector whenever a Java
object reference goes out of scope. It may or may not do so, and it may choose to do so on its own
schedule. Accordingly, you may want to actively call the delete() or finalize() methods
on resource-hungry objects when you are done with those objects, rather than wait for the JVM to
free them.

Note that with Netica-J 2.21, Net.delete() has been merged into Net.finalize() so
that calling Net.finalize() will now free all of a net’s native resources.

This is not the case for Node. Node.finalize() and Node.delete() remain distinct
since you typically do not want a node’s native resources to be freed just because the node is out
of scope. Call Node.delete()when you want to free its native resources.

Note, if you do override the finalize() method of any Netica-J class, be certain that you
always call the base class finalizer method (super.finalize();) as your last instruction, so
that Netica-J can do its own housekeeping upon the Java object being collected. For example, if
your class extends norsys.netica.Streamer, and you need to override the finalize() method to
perform special close-down handling of files and such, then your finalize method would look
something like this:

 /**
* overrides Streamer.finalize().
*/

public void finalize() throws NeticaException {
. . . your own finalization logic . . .
super.finalize();

 }

12 NETICA API JAVA VERSION 2.21

3. Sample Software

3.1. Building and Saving a Net

The following program can be found in the examples\ directory of your Netica-J installation. It
builds the following Bayes net in memory:

Tuberculosis
Present
Absent

1.04
99.0

XRay Result
Abnormal
Normal

11.0
89.0

Tuberculosis or Cancer
True
False

6.48
93.5

Lung Cancer
Present
Absent

5.50
94.5

Smoking
Smoker
NonSmoker

50.0
50.0

Visit To Asia
Visit
No Visit

 1.0
99.0

For additional information on this topic, see the Building and Saving Nets chapter in the C API Manual.

/*
 * BuildNet.java
 *
 * Example use of Netica-J to construct a Bayes net and save it to file.
 */
import norsys.netica.*;
import norsys.neticaEx.aliases.Node;

public class BuildNet {
public static void main (String[] args){

try {
Node.setConstructorClass ("norsys.neticaEx.aliases.Node");
Environ env = new Environ (null);

Net net = new Net();
net.setName ("AsiaEx");

Node tuberculosis = new Node ("Tuberculosis", "present, absent", net);
Node smoking = new Node ("Smoking", "smoker, nonsmoker", net);
Node cancer = new Node ("Cancer", "present, absent", net);
Node tbOrCa = new Node ("TbOrCa", "true, false", net);
Node xRay = new Node ("XRay", "abnormal, normal", net);
Node visitAsia = new Node ("VisitAsia", "visit, no_visit", net);

JAVA VERSION 2.21 NETICA API 13

visitAsia.setTitle (“Visit to Asia”);
cancer.setTitle (“Lung Cancer”);
tbOrCa.setTitle (“Tuberculosis or Cancer”);

visitAsia.state("visit").setTitle ("Visited Asia within the last 3 years");

tuberculosis.addLink (visitAsia); // puts link from visitAsia to tuberculosis
cancer.addLink (smoking);
tbOrCa.addLink (tuberculosis);
tbOrCa.addLink (cancer);
xRay.addLink (tbOrCa);

visitAsia.setCPTable (0.01, 0.99);
smoking.setCPTable (0.5, 0.5);

// VisitAsia present absent
tuberculosis.setCPTable ("visit", 0.05, 0.95);
tuberculosis.setCPTable ("no_visit", 0.01, 0.99);

// Smoking present absent
cancer.setCPTable ("smoker", 0.1, 0.9);
cancer.setCPTable ("nonsmoker", 0.01, 0.99);

// TbOrCa abnormal normal
xRay.setCPTable ("true", 0.98, 0.02);
xRay.setCPTable ("false", 0.05, 0.95);

tbOrCa.setEquation ("TbOrCa (Tuberculosis, Cancer) = Tuberculosis || Cancer");
tbOrCa.equationToTable (1, false, false);

Streamer stream = new Streamer ("AsiaEx.dne");
net.write (stream);

net.finalize(); // free resources immediately and safely; not strictly necessary,
 // but a good habit

}
catch (Exception e){

e.printStackTrace();
}

}
}

After this program executes you may want to look at the AsiaEx.dne file it creates using a
text editor.

14 NETICA API JAVA VERSION 2.21

3.2. Performing Probabilistic Inference

The following program can be found in the examples\ directory of your Netica-J installation. It
reads back into memory the AsiaEx.dne file created above and then does probabilistic inference
on the net. For additional information on this topic, see the Probabilistic Inference chapter in the
C API Manual.

/*
 * DoInference.java
 *
 * Example use of Netica-J for doing probabilistic inference.
 */
import norsys.netica.*;

public class DoInference {
public static void main (String[] args){

try {
Environ env = new Environ (null);

// Read in the net created by the BuildNet.java example program.
Net net = new Net (new Streamer ("AsiaEx.dne"));

Node visitAsia = net.getNode ("VisitAsia");
Node tuberculosis = net.getNode ("Tuberculosis");
Node xRay = net.getNode ("XRay");

net.compile();

double belief = tuberculosis.getBelief ("present");
System.out.println ("\nThe probability of tuberculosis is " + belief);

xRay.enterFinding ("abnormal");
belief = tuberculosis.getBelief ("present");
System.out.println ("\nGiven an abnormal X-ray,\n" +

"the probability of tuberculosis is " + belief);

visitAsia.enterFinding ("visit");
belief = tuberculosis.getBelief ("present");
System.out.println ("\nGiven an abnormal X-ray and a visit to Asia,\n" +

 "the probability of tuberculosis is " + belief + "\n");

net.finalize();
}
catch (Exception e){

e.printStackTrace();
}

}
}

JAVA VERSION 2.21 NETICA API 15

3.3. Creating Cases
The following program can be found in the examples\ directory of your Netica-J installation. It
reads back into memory the AsiaEx.dne file created from the BuildNet example above and then
creates a case file of cases that follow the probability distribution of that file.
/*
 * SimulateCases.java
 *
 * Example use of Netica-J for generating random cases that follow
 * the probability distribution given by a Bayes net.
 */
import java.io.File;
import norsys.netica.*;

public class SimulateCases {

public static void main (String[] args){
int numCases = 200;
System.out.println ("Creating " + numCases + " random cases...");

try {
Environ env = new Environ (null);

// Read in the net created by the BuildNet.java example program.
Net net = new Net (new Streamer ("AsiaEx.dne"));
NodeList nodes = net.getNodes();

(new File ("AsiaEx.cas")).delete(); // "AsiaEx.cas" may exist from a previous run
Streamer caseFile = new Streamer ("AsiaEx.cas");

net.compile();

for (int n = 0; n < numCases; n++) {
net.retractFindings();
int res = net.generateRandomCase (nodes, 0, 20);
if (res >= 0)

net.writeCase (nodes, caseFile, n, -1.0);

net.finalize();
}

}
catch (Exception e){

e.printStackTrace();
}

}
}

16 NETICA API JAVA VERSION 2.21

3.4. Learning CPTs from Cases
The following program can be found in the examples\ directory of your Netica-J installation. It
learns the CPTables (not structure) for a net structurally identical to AsiaEx.dne from the case file
(temp.cases) generated by the SimulateCases program above. For additional information on this
topic, see the Learning From Cases chapter in the C API Manual.
/*
 * LearnCPTs.java
 *
 * Example use of Netica-J for learning the CPTs of a Bayes net
 * from a file of cases.
 */
import java.io.File;
import norsys.netica.*;

public class LearnCPTs {

public static void main (String[] args) {
System.out.println ("Running Netica-J LearnCPTs example...");

try {
Environ env = new Environ (null);

// Read in the net created by the BuildNet.java example program.
Net net = new Net (new Streamer ("AsiaEx.dne"));
NodeList nodes = net.getNodes();
int numNodes = nodes.size();

// Remove CPTables of nodes in net, so new ones can be learned.
for (int n = 0; n < numNodes; n++) {

Node node = (Node) nodes.get (n);
node.deleteTables();

}
// Read in the case file created by the SimulateCases.java
// example program, and learn new CPTables.

Streamer caseFile = new Streamer ("AsiaEx.cas");
net.reviseCPTsByCaseFile (caseFile, nodes, 1.0);

net.write (new Streamer ("Learned_AsiaEx.dne"));

net.finalize();
}
catch (Exception e){

e.printStackTrace();
}

}
}

JAVA VERSION 2.21 NETICA API 17

/*=======================================
 * This alternate way can replace the net.reviseCPTsByCaseFile
 * line above, if you need to filter or adjust individual cases.
 */
long[] casePosn = new long[1];
casePosn [0] = Net.FIRST_CASE;
while (true) {

net.retractFindings();
net.readCase (casePosn, caseFile, nodes, null, null);
if (casePosn[0] == Net.NO_MORE_CASES) break;

net.reviseCPTsByFindings (nodes, 1.0);
casePosn[0] = Net.NEXT_CASE;

}
/*==*/

	Version 2.21
	June 11, 2002
	Directory
	
	The Netica-J directory structure

	Netica-J Package Design and Usage

