

Netica-J Manual

Version 4.18 and Higher

Java Version of Netica API

Norsys Software Corp

2 NETICA API JAVA VERSION 4.18

Netica-J Reference Manual

Version 4.18

October 21, 2010

Copyright 1996-2010 by Norsys Software Corp.

This document may be copied and stored freely, provided it is duplicated in its entirety, without

modification, and including the copyright notice.

Published by:

Norsys Software Corp.

3512 West 23rd Avenue

Vancouver, BC,

CANADA

V6S 1K5

www.norsys.com

Netica and Norsys are registered trademarks of Norsys Software Corp.

Microsoft, Windows, MS-DOS, Visual C++ and Visual Basic are registered trademarks of Microsoft, Inc.

Sun, Solaris and Java are registered trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

Unicode is a trademark of Unicode, Inc.

PDF is a registered trademark of Adobe Systems, Inc.

X Window System is a trademark of X Consortium, Inc.

IBM and AIX are registered trademarks, and PowerPC is a trademark of International Business Machines Corporation.

Borland is a registered trademark of Borland International, Inc.

Intel and Pentium are registered trademarks of Intel Corporation.

Hugin is a trademark of Hugin Expert A/S

Other brands and product names are trademarks of their respective holders.

While great precaution has been taken in the preparation of this manual, we assume no responsibility for

errors or omissions. Neither is any liability assumed for damages resulting from the use of the

information contained herein.

JAVA VERSION 4.18 NETICA API 3

Contents
Published by: .. 2

1 Introduction 6

1.1 Netica-Java API .. 6

1.2 License Agreement and Password .. 9

1.3 Files Included ... 10

1.4 Getting Started .. 11

1.4 Complete Javadocs Reference .. 12

1.5 IDE Installation... 12

1.6 Upgrades, Support and Mailing List ... 13

1.7 Other Resources .. 14

2 Netica-J Package Design and Usage 15

2.1 The “Ex” classes NetEx, NodeEx, and NodeListEx 15

2.2 Inheritance of the Node and Net classes ... 16

2.3 Multithreading .. 16

2.4 Event Handling ... 17

2.5 Java Objects and Native Object Peers .. 17

2.6 Exception Handling .. 18

2.7 Finalizers & Memory Management .. 19

3 Probabilistic Inference 20

3.1 Bayes nets and Probabilistic Inference ... 20

3.2 Netica's Probabilistic Inference .. 21

3.3 Example of Probabilistic Inference .. 22

4 Building and Saving Nets 27

5 Findings and Cases 34

5.1 Cases and Case Files ... 36

5.2 Casesets .. 40

5.3 Connecting with a Database ... 40

5.4 Case Files with Uncertain Findings .. 42

6 Learning From Case Data 46

6.1 Algorithms .. 47

6.2 Experience .. 49

6.3 Counting Learning .. 50

6.4 How To Do Counting-Learning ... 51

6.5 Example of Counting-Learning .. 52

6.6 EM and Gradient Descent Learning ... 54

6.7 Fading ... 55

6.8 Performance Testing a Net using Real-World Data 56

7 Modifying Nets 60

7.1 Common Modifications .. 60

4 NETICA API JAVA VERSION 4.18

7.1 Node Libraries .. 61

7.2 Net Reduction ... 64

7.3 Probabilistic Inference by Node Absorption .. 65

8 Decision Nets 67

8.1 Programming Example ... 68

9 Drawing Nodes and Nets 72

9.1 Netica Net Visual Properties and the gui Package 74

9.2 Node Position ... 74

9.3 Node Style .. 74

9.4 Drawing Nodes ... 75

9.5 Event Handling ... 75

9.6 NetViewer ... 75

9.7 Miscellaneous Useful Features ... 76

9.8 Feedback Wanted ... 76

10 Special Topics 77

10.1 Node Lists and Node-sets .. 77

10.2 Graph Algorithms .. 79

10.3 User-defined Data.. 80

10.4 Sensitivity .. 81

10.5 Stochastic Simulation .. 83

11 Equations 84

11.1 Simple Examples ... 84

11.2 Equation Syntax .. 85

11.3 Equation Conditionals ... 87

11.4 Converting an Equation to a Table .. 88

11.5 Equations and Table Size .. 88

11.6 Link Names ... 89

11.7 Referring to States of Discrete Nodes ... 89

11.8 Constant Nodes as Adjustable Parameters .. 90

11.9 Tips on Using Equations ... 90

11.10 Specialized Examples .. 91

11.11 Equation Constants, Operators, and Functions.. 92

11.12 Special Math and Distribution Functions Reference 95

12 Bibliography 104

13 Functions by Category 105

System ... 105

Error Handling .. 105

File Operations .. 105

Findings (Evidence) ... 106

Compiling .. 106

Belief Updating and Inference .. 106

Learning From Data .. 107

Decision Nets .. 107

JAVA VERSION 4.18 NETICA API 5

Node Lists ... 107

Cases (Sets of Findings) .. 107

Sensitivity to Findings (Utility-Free Value of Information) 108

Performance Testing a Net .. 108

Database Connectivity .. 108

High-Level Net Modification .. 108

Low-Level Net Modification .. 109

Retrieving Net Information ... 109

Equations ... 110

Tables .. 110

Node-Sets .. 110

Visual Display ... 111

User Data Fields .. 111

14 Index 112

6 NETICA API JAVA VERSION 4.18

1 Introduction

This reference manual is for Netica-J, the Java version of the Netica API Programmer‟s Library. It is

meant to be used in conjunction with the onscreen Netica-J javadocs reference (see below). Netica-J is a

set of Java classes and an accompanying Java Native Interface (JNI) library that allow a Java developer to

use the Netica API Programmer‟s Library for working with Bayesian networks.

This manual is not a manual for Netica Application, which is an easy to use point-and-click application

program with much of the same functionality (see http://www.norsys.com/netica.html). Users of the API

will typically want to have the Application handy for visually inspecting and modifying nets. A version

of Netica soon to be released will allow Netica API to use the GUI of Netica Application.

Besides Java, other versions of Netica API exist for C/C++, C# and Visual Basic each offering the full

Netica functionality. Visit http://www.norsys.com/netica_api.html to learn more about the other members

of the Netica API family, and to obtain their documentation. The C version can be used by programs

written in any language which can call C functions, such as C++, Python, Perl, Prolog, Lisp, Matlab,

Delphi Pascal, Fortran or Cobol). Interface files for some of these languages, developed by the Netica

community, are available from Norsys. Matlab is supported through this, the Java API.

This manual assumes that you are familiar with the Java programming language. It also assumes

familiarity with Bayesian networks or influence diagrams, although it has a little introductory material,

especially on issues that are new or generally not well understood. Questions and comments about

material in this manual may be sent to: netica-j@norsys.com.

1.1 Netica-Java API

The Netica-J API is a complete library of Java classes for working with Bayesian networks (also known

as Bayes nets, belief networks, graphical models or probabilistic causal models) and influence diagrams

(also known as decision networks). It contains functions to build, learn from data, modify, transform,

performance-test, save and read nets, as well as a powerful inference engine. It can manage “cases” and

http://www.norsys.com/netica.html
http://www.norsys.com/netica_api.html
mailto:netica-j@norsys.com

JAVA VERSION 4.18 NETICA API 7

sets of cases, and can connect directly with most database software. Bayes nets can be used for diagnosis,

prediction, classification, sensor fusion, risk analysis, decision analysis, combining uncertain information

and numerous probabilistic inference tasks.

Programs that use Netica-J completely control it. For example, Netica functions will not take any action

until called, Netica will not do any I/O unless requested to, and its functions will not take an unpredictable

amount of time or memory before returning. Netica-J is threadsafe in multi-threaded environments. It

may be used in conjunction with other Java or JNI C libraries and it won't interfere with them.

Versions of Netica-J are available for MS Windows, Linux, and Macintosh (and for many other platforms

from cell phones to mainframes - contact us for info), and each of these has an identical interface, so you

can move your code between these platforms without changing anything to do with the Netica API. For

the latest versions for the more common platforms, visit http://www.norsys.com/download_api.html

Before releasing any new version of the Netica API, every function is put through rigorous quality

assurance testing to make sure it operates as designed. Hundreds of real nets and millions of random nets

are generated and solved in multiple ways to check the inference results. This level of QA, combined

with a careful initial design and over ten years of extensive customer usage, has resulted in a rock-solid

product.

The Netica API has been designed to be easily extended in the future without changing what already

exists. Many new features are currently under development, and it will continue to be extended for years

to come.

Netica API features:

• Dynamic Construction: Can build and modify networks "on the fly" in memory (to support working

with dynamic Bayes nets), and can save/read them to file.

• Equations: Probability tables may be conveniently expressed by equations, using a Java/C type syntax

and taking advantage of an extensive library of built-in functions, including all the standard math

functions and common probability distributions, as well as some functions and distributions

specially suited to Bayes nets, such as noisy-or, noisy-max, noisy-sum, etc.

• Learning from Data: Probabilistic relations can be learned from case data, even while the net is being

used for probabilistic inference. Learning from data can be combined with manual construction of

tables and representation by equations. It can handle missing data and latent variables or hidden

nodes. Learning algorithms include: counting, sequential updating, fractional updating, EM

(expectation maximization), and gradient descent.

• Database Connectivity: Allows direct connection to most database software.

• Threadsafe: Can be used safely in multi-threaded environments.

• Encryption: Can save and read nets to file in encrypted form, which allows deploying solutions relying

on Bayes nets kept private to an organization.

http://www.norsys.com/download_api.html

8 NETICA API JAVA VERSION 4.18

• Sensitivity: Netica can efficiently measure the degree to which findings at any node can influence the

beliefs at another node, given the findings currently entered. The measures can be in the form of

mutual information (entropy reduction), or the expected reduction of real variance.

• Advanced Decision Nets: Can solve influence diagrams which have multiple utility and decision

nodes to find optimal decisions and conditional plans, using a junction tree algorithm for speed.

Handles multi-stage decision problems, where later decisions depend on the outcomes of earlier

ones, and on observations not initially known. No-forgetting links need not be explicitly specified.

• Junction Tree Algorithm: Can compile Bayes nets and influence diagrams into a junction tree of

cliques for fast probabilistic inference. An elimination order can be specified or Netica can

determine one automatically, and Netica can report on the resulting junction tree.

• Soft Evidence: Accepts likelihood findings (i.e., “virtual evidence”), findings of the form that some

variable is not is some state, Gaussian findings, and interval findings, as well as regular real-

valued or state findings.

• Link Reversal: Can reverse specified links or "sum out" (absorb) nodes of a Bayes net or influence

diagram while maintaining the same overall joint probability distribution, properly accounting for

any findings in the removed nodes or other nodes.

• Disconnected Links: Links may be individually named and disconnected from parent or child nodes,

thus making possible libraries of network fragments (which you may then copy and connect to

other networks or node configurations).

• Case Support: Can save individual cases (i.e. sets of findings) to file, and manipulate files of cases.

Works with the UVF file format, which allows cases to be incomplete or have uncertain values

(Gaussian, interval, sets of possibilities, sets of impossibilities, etc.), and associates an ID number

and multiplicity with each case.

• Simulation: Can do sampling (i.e. stochastic simulation) to generate random cases with a probability

distribution matching the Bayes net. Can use a junction tree algorithm for speed, or do direct

sampling for nets too large to generate CPTs or a junction tree.

• User Data: Every node and network can store by name arbitrary data fields defined by you. They may

contain numbers, strings, byte data, etc., and are saved to file when the object in question is being

saved. As well, there are fields not saved to file, which can contain a pointer to anything you

wish.

• Error Handling: Has a simple but powerful method for handling usage errors, which can generate very

detailed error messages if desired.

• Argument Checking: Allows programmers to control how carefully API functions check their

arguments when they are called, including a “development mode” to extensively check everything

passed to an API function.

• Compatibility: Can work hand-in-hand with the Netica Application standalone product (for example,

sharing the same files), and with Netica API versions for other languages.

• Efficient: Is optimized for speed, and is not too large (2 MB typical).

• Many Platforms: Is available for a wide range of platforms including MS Windows (95/NT to Vista),

Linux, Macintosh, AIX, etc. Contact Norsys for other platforms.

JAVA VERSION 4.18 NETICA API 9

• Memory Limiting: You can set a bound on how much total heap space Netica-J API is allowed to

allocate for large tables, thereby preventing virtual memory thrashing or the memory-starving of

other parts of your application.

• Java Oriented Features:

 Clean object-oriented design

 Comprehensive javadocs and manual

 Sample java source applications to get you started

 Uses Java's exception handling mechanism in the natural way

 Supports event listening by any Java object for events such as the creation,

deletion, duplication, etc. of Nets or Nodes

 Supports user data fields for any Serializable Java object

 Supports standard Java I/O streams

 Supplies graphical visualization of Bayes nets with AWT/SWING classes

• More Features: A more extensive list of features is available from:

http://www.norsys.com/netica_api.html

1.2 License Agreement and Password

Before using Netica API, make sure you accept the license agreement that is included in this package as

the file License Agreement.pdf.

If you have purchased a license to use Netica API, you will have received a license password by email, on

the invoice, and/or on the shipped disk. You pass the license password to the Environ constructor. For

example:

Environ env = new Environ("your unique license");

If you do not have a license password, then you can simply supply null in place of it, in which case

Netica-J API will be fully functional, but limited in problem size (e.g. size of nets, size of data sets).

The license password you have purchased also licenses you to use versions of Netica API for other

languages, such as the C version (Netica-C), the C# or Visual Basic version, or the C++ version. Simply

supply that license string to the appropriate Environment constructor in those languages. The same rights

and obligations granted by the API license apply to all the language versions.

If your license password enables Netica API, it will have a “310-” within it. The digit immediately

following that is the version number of the license. It must be at least 3 to fully enable this version (3.xx)

of Netica API. If it is less, then after you call new Environ(), a warning message will be available for

viewing if you call NeticaError.getWarnings(), and Netica API will continue operation in limited

mode. To upgrade your license, contact Norsys, or see: https://www.norsys.com/order_v3_upgrade.htm.

http://www.norsys.com/netica_api.html
https://www.norsys.com/order_v3_upgrade.htm

10 NETICA API JAVA VERSION 4.18

1.3 Files Included

The following files are included in the distribution of Netica-J, the Java version of Netica API:

Directory File Description

docs NeticaJ_Man.pdf

 javadocs/

 License Agreement.pdf

 the file for this document

 the javadocs directory for Netica-J

 a legal document relating to the use of Netica API

bin NeticaJ.jar

 NeticaJ.dll

 (libNeticaJ.so)

 (libNeticaJ.jnilib)

 Netica.dll

 (libnetica.a)

 the Java class library that defines Netica-J

 the Java-to-Native interface library (Windows only)

 “ “ “ (Unix/Linux only)

 “ “ “ (MacOSX only)

 the native Netica API library (Windows only)

 “ “ “ (MacOSX only)

src/neticaEx/ NetEx.java

 NodeEx.java

 NodeListEx.java

 A class containing useful Net methods

 “ “ Node “

 “ “ NodeList “

src/neticaEx/

aliases
 Net.java

 Node.java

 NodeList.java

 A convenience class that renames NodeEx as Node

 “ “ “ NetEx as Net

 “ “ “ NodeListEx as NodeList

demo Demo.java

 compile.bat (.sh)

 run.bat (.sh)

 a sample application to test your Netica-J installation

 a sample batch file for compiling Demo.java

 (.bat for Windows, .sh for Unix/Linux/MacOSX)

 a sample batch file for running Demo.class

 (.bat for Windows, .sh for Unix/Linux/MacOSX)

examples

examples/

Data Files

 BuildNet.java

 DoInference.java

 SimulateCases.java

 LearnCPTs.java

 LearnLatent.java

 ClassifyData.java

 MakeDecision.java

 DrawNet.java

 NetViewer.java

 TestNet.java

 compile.bat (.sh)

 run.bat (.sh)

 ChestClinic.dne

 BreastCancer.dne

 ChestClinic.cas

ChestClinic_WithVisuals.dne

 LearnLatent.cas

 BreastCancer.cas

 demonstrates building a Bayes net from scratch

 demonstrates doing inference

 demonstrates creating case instances that statistically derive from a given net

 demonstrates learning from cases

 demonstrates EM Learning

 demonstrates Naive Bayesian Classification of real-world medical data

 demonstrates building a decision net and choose an optimal decision with it

 demonstrates use of the gui package for drawing nets

 demonstrates use of the gui package for editing nets and their findings

 demonstrates testing the performance of a learned net with the net tester tool

 a sample batch file for compiling all the java files in this directory

 a sample batch file for running all the java programs in this directory, after

they have been compiled

 an example net file required by SimulateCases/LearnCPTs/TestNet.java

 an example net file required by ClassifyData.java

 a case file created by SimulateCases.java and required by TestNet.java

 ChestClinic.dne but including all the size/position/color display information

 a case file required by LearnLatent.java

 a case file required by ClassifyData.java

JAVA VERSION 4.18 NETICA API 11

The Netica-J directory structure

The docs/ directory contains manuals, javadocs, license agreements, and any other documentation.

The bin/ directory contains the Netica-J runtime software without which Netica-J will not function.

The src/ directory contains source software that is distributed with Netica-J. You are free to examine, compile, or

copy from these source files. We suggest that you leave the original files unmodified. These functions may change

in future version of Netica.

The demo/ directory contains a simple program that should be compiled and run after installation to establish that

your Netica-J system is correctly installed and ready to use.

The examples/ directory contains assorted sample data and source code that you may examine, copy, and edit freely.

1.4 Getting Started

Recommended Installation steps:

1. A Java-2 platform is required. There are many suppliers, for example SUN Microsystems at

http://java.sun.com/products/. Version 4.18 was constructed using Java 1.4.2 and should be

compatible with any 1.4 and higher platform.

2. Download Netica-J from the Norsys website: http://www.norsys.com/netica-j.html (older

versions can be found at http://www.norsys.com/downloads/old_versions). Choose a version

that matches your OS/platform.

3. Unzip it, and it will form a directory called NeticaJ_325 (or the current version number).

4. Test your installation with the Demo application provided:

a) Change to the demo/ directory and at the command line, type: compile.bat

(compile.sh on Unix/Linux/MacOSX). Or click on the compile.bat icon. This will

compile Demo.java and create Demo.class.

b) At the command line, type: run.bat (run.sh). Or click on the run.bat icon. This

will run Demo.class.

c) If it displays a welcome message, and does simple probabilistic inference without

declaring any errors, then your installation was successful.

5. Now that you have the example program running, you can duplicate the demo/ directory,

replace Demo.java with your own source files, and you are ready to build your own

application. Don't forget to replace "null" in "new Environ(null)" with your own

license password, if you want to have the full functionality of Netica.

http://java.sun.com/products/
http://www.norsys.com/netica-j.html
http://www.norsys.com/downloads/old_versions

12 NETICA API JAVA VERSION 4.18

6. Demo.java, is a good starting point for developing your own applications. You may wish to

"cut-and-paste" from it. Similar examples showing how to build a net from scratch, do

inference, generate cases, and learn from cases are provided in the examples/ directory.

7. If you are familiar with the Hugin or JavaBayes systems and would like information on

equivalent Netica functions, contact Norsys.

1.4 Complete Javadocs Reference

For javadocs-style documentation for Netica-J, simply point your browser at the index.html file in the

docs/javadocs/ directory. The javadocs very thoroughly document every class and every function of the

Netica API. You will find it an invaluable companion during development.

1.5 IDE Installation

Using Java IDEs (Eclipse, JBuilder, NetBeans, JDeveloper, Forte, etc.)

You must inform your IDE of the locations of the three library files: NeticaJ.dll (libNeticaJ.so),

NeticaJ.jar, and Netica.dll (libnetica.a). Assuming Netica-J was installed at the following location

on your filesystem:

Windows: C:\NeticaJ_325

Unix/Linux/MacOSX: /home/NeticaJ_325

1) NeticaJ.dll(libNeticaJ.so/.jnilib) must appear on the java library path. Typically this is done

 with a -D option to the JVM. For example:

Windows: java -Djava.library.path=C:\NeticaJ_325\bin

Unix/Linux/MacOSX: java -Djava.library.path=/home/NeticaJ_325/bin

2) NeticaJ.jar must appear on the java CLASSPATH. For example:

Windows: java -classpath C:\NeticaJ_325\bin\NeticaJ.jar

Unix/Linux/MacOSX: java -classpath /home/NeticaJ_325/bin/NeticaJ.jar

3) Windows Only: Netica.dll must appear on the Windows execution "path, so that Windows can find it.

For example:

Windows: set PATH=C:\NeticaJ_325\bin;%PATH%

Eclipse instructions:

JAVA VERSION 4.18 NETICA API 13

1. Create your Java project as usual

2. In the "Project Properties" dialog, choose the "Java Build Path" link, then click on the "Libraries¨ tab,

and then click on the "Add External Jars" link. Navigate to the C:\NeticaJ_325\bin directory and select

NeticaJ.jar

3. In the "Run As" dialog, go to the "Arguments" tab and in the "VM Arguments" window create the

following argument: -Djava.library.path=C:\NeticaJ_325\bin

4. Windows Only: Still in the "Run As" dialog, go to the "Environment" tab and create a new "PATH"

variable with value: C:\NeticaJ_325\bin;%PATH%

1.6 Upgrades, Support and Mailing List

New versions of Netica API are available for download from the Norsys website (from the “Downloads”

menu at www.norsys.com). If you are using a license password, it will work with any version released

within a year of the password being issued (and often longer).

If you would like to be notified of version updates and other news regarding Netica-J, please visit

https://www.norsys.com/mailing_list.html?interests=Netica-J and supply us with your e-mail address.

Mailings are infrequent, and your privacy will be respected.

We at Norsys have worked hard to make Netica-J a very high quality and robust package that is easy and

natural to use. If you have any ideas for how it can be improved, we would be very happy to hear them.

Please send your suggestions to: netica-j@norsys.com

http://www.norsys.com/
https://www.norsys.com/mailing_list.html?interests=Netica-J
mailto:netica-j@norsys.com

14 NETICA API JAVA VERSION 4.18

1.7 Other Resources

The following resources at the Norsys website may be helpful when using Netica API:

Netica Application - This program has an easy-to-use graphical interface, and most developers

working with Netica API use it to visualize and/or edit the Bayes nets they are working with. It

is also useful for experimentation, and trying out concepts that are to be implemented using

Netica API, since it operates in much the same way.

 Website location: http://www.norsys.com/netica.html

Resources Page - Describes training, consulting, literature and websites available for Netica.

 Website location: http://www.norsys.com/resources.htm

Bayes Net Library - A website containing many example Netica files that are ready to download into

Netica (Application or API). They are Bayes nets and decision nets that have become classics in

the literature, or are contributed by other Netica users. This is a good place to look for

inspiration and ideas.

 Website location: http://www.norsys.com/net_library.htm

DNET File Format - Describes the file format for Netica DNET files (which have file extension .dne

or .dnet).

 Website location: http://www.norsys.com/dl/DNET_File_Format.txt

http://www.norsys.com/netica.html
http://www.norsys.com/resources.htm
http://www.norsys.com/net_library.htm
http://www.norsys.com/dl/DNET_File_Format.txt

JAVA VERSION 4.18 NETICA API 15

2 Netica-J Package Design and Usage

This section outlines programming principles and issues as they relate to Netica-J's operation and

organization. If you are an experienced Java developer or you are planning a sizeable development effort

with Netica-J, you will definitely want to read and understand this section before beginning your

development.

2.1 The “Ex” classes NetEx, NodeEx, and NodeListEx

The “Ex” classes inherit from their parent class (NodeEx extends Node, NetEx extends Net, etc).

They are built on top of the core Netica system to provide convenience of use (the “Ex” stands for

“Extra”, “Example”, “External”, “Experimental”, and “Excellent!”). These are utilities and shortcuts that

were deemed useful, but not basic enough to belong in the base class. Some of them are “Ex” methods

because they are more useful in source code form, so that you can customize them to your needs.

Because their Java source is included, the “Ex” classes are a good place to look for coding examples.

Indeed, many of the coding examples found in the javadocs are taken from the “Ex” classes.

Unlike the core Netica system, the “Ex” classes may change in future versions; methods may be added,

removed or modified. For this reason, you may want to keep copies of the Ex classes for future reference,

or you may want to copy out any methods you need to form your own extensions of the parent classes.

Since the “Ex” classes contain so many useful methods, many users will want to use the “Ex” classes in

place of the more basic parent classes. See Section 3, Inheritance, below, for considerations when doing

this.

The “Ex” classes are in part supported by the Netica-J user community, so please feel welcome to submit

additional methods that you have found useful, or to suggest improvements to the ones already there.

16 NETICA API JAVA VERSION 4.18

Some of the “Ex” class methods are static, while others are not. The basic criterion of choosing to make a

method static was whether that method could be thought of as a “standalone-utility” that would be useful

to have around even when you didn‟t have an “Ex” object present. Since none of the “Ex” classes define

new state data, it is a trivial exercise to convert a static method to be non-static or vice versa, should you

prefer the alternate.

Because the “Ex” classes are so useful, many developers will want to use them directly. To make this

easy, their compiled classes have been included in the NeticaJ.jar distribution. All you need do is

import norsys.neticaEx.*; and you are ready to use them without the need to compile your

own versions of them.

Finally, as a convenience, we also supply in the norsys.neticaEx.aliases package, three wrapper classes

for NetEx, NodeEx, and NodeListEx, that are named Net, Node, and NodeList, respectively. They allow

you to use the base class names and still use the Ex classes. See demo/Demo.java and

examples/BuildNet.java for examples of how to use these convenience classes.

2.2 Inheritance of the Node and Net classes

Advanced users will want to create their own specialized Node and Net classes. To make this task easier,

and avoid the need for copy constructors, we have supplied you with a means to inform Netica-J what

class you would like it to use when constructing a Net or Node (for example, when Netica-J is reading a

net in from a file). The static methods:

Net.setConstructorClass (String className) and
Node.setConstructorClass (String className)

have been supplied for this purpose. All they require is that your Net or Node extension have a default

constructor. See their javadocs pages for examples.

Some users will want to use the words “Net” and “Node” for their own net and node classes, that inherit

from norsys.netica.Net and norsys.netica.Node, respectively. The supplied files in

src/neticaEx/aliases/ have examples of this. Although, overloading the terms “Net” and “Node” like this

is not difficult, namespace conflicts may arise. In general, if you explicitly import your Node or Net

class, the Java compiler will use those as the default classes.

2.3 Multithreading

If you are running Netica-J within a single process and are not creating more than one thread in that

process, you don‟t need to consider this issue. However, if you are operating in a concurrent usage

environment, then you need to consider threading issues. Netica-J is threadsafe, in that if one thread calls

JAVA VERSION 4.18 NETICA API 17

a Netica-J function, and while it is executing another thread calls a Netica-J function, the new call will not

interfere, even if they are both trying to operate on the same object (the new call will execute after the

original is done). Of course, your software must do its own appropriate synchronization, and consider

race possibilities, if you have more than one thread working on the same object (such as net or node) at

the same time. Threads operating on separate nets will not have any interference.

For efficiency reasons, you may want to consider the following: Many Netica-J functions will block other

Netica-J functions until they return. This is an efficiency concern only, and not a deadlock concern, since

the executing Netica-J function will not be waiting on any other thread (unless you do that yourself

through the use of Netica-J callbacks).

2.4 Event Handling

If you wish your program to receive events, Netica-J has the ability to call your program when certain

types of events occur.

Any Java object can choose to listen to Netica events by simply implementing the NeticaEventListener

interface and asking the node or net that generates the events to add itself to that node or net‟s listener list.

The methods Node.addListener and Net.addListener are supplied for this purpose. Since

Node and Net objects are already NeticaEventListeners, they each possess an eventOccurred

(NeticaEvent) method. If you should choose to override this method, it is important that you call

the base class method super.eventOccurred(event) in your method, so that this node or net

will still be able to handle deleting events properly.

Currently events are generated for the creation, removal and duplication of Nodes and Nets. Future

versions of Netica-J will include more types of events. If you have a request, please let us know.

2.5 Java Objects and Native Object Peers

Since Netica-J is a JNI API, many of the Java objects created are “proxies” of their native or “peer”

counterpart objects internal to the core Netica binary. This is true of Environ, Net, Node, NetTester,

NeticaError, Sensitivity, and Streamer. The remaining Java classes (General, NeticaEvent,

NeticaException, NeticaListener, NodeList, State, User, Util, Value, and VisualNode) do not have peer

equivalents.

The existence of peer relationships is usually transparent to the Java developer. Netica-J was designed to

give the developer as much as possible the sense he/she is working in a 100% pure Java environment.

That provides the best of both worlds: the productivity, safety and memory management of Java with the

speed and reliability of a highly optimized, highly tested, widely used native binary.

18 NETICA API JAVA VERSION 4.18

The only situations where you need to know about peer objects is when considering finalization and the

cleanup of native resources (discussed in the Finalizers section, below), or when working in a model-

view-controller (MVC) environment where things could be happening to the native model objects, and

the Java environment is presenting but one view on that model. This can happen, for instance, if Netica-J

is communicating with peer objects inside Netica Application. A user of Netica Application could delete

a native node via the GUI, and the Java environment would then find that its Node object had been

disconnected from its peer. Netica-J has a standard Java Publish-and-Subscribe mechanism (using

NeticaEventListeners) for Java objects to be made aware of such occurrences on the native side of the

universe (see the Event Handling section, below).

2.6 Exception Handling

Exception handling in Netica-J works in the normal Java way. If a method encounters an unexpected

situation that it cannot resolve, a NeticaException is thrown. The vast majority of Netica-J methods are

able to throw a NeticaException. The toString() method of NeticaException details the reason for the

Exception. Hence, your typical try-catch block could look something like this:

try {

// call Netica-J methods

}

catch (NeticaException e) {

e.printStackTrace();

}

If you are familiar with the Netica C API, you will find that Netica-J‟s exception handling mechanism

makes coding much more convenient and straightforward, since you no longer need to actively check if

an error has occurred. Netica-J looks after that for you, and will throw a NeticaException automatically if

any “serious” (“show stopper”) error occurs. By “serious” we mean any errors of severity level

ERROR_ERR or XXX_ERR which means the requested operation was not completed.

Note that this means that WARNING_ERR and lower warnings do not result in a NeticaException being

thrown, so in those cases where such warnings can occur, you can actively call the static method

NeticaError.getWarnings after the method call, to determine if a warning has occurred and, if

so, what the warning was about. See the javadocs for NeticaError.getWarnings for examples of

this.

It is okay to call NeticaError.getWarnings only once in awhile, since warnings will accumulate

until the next getWarnings invocation, whereupon they are cleared from the warnings list.

JAVA VERSION 4.18 NETICA API 19

2.7 Finalizers & Memory Management

For large networks and large node tables, Netica can consume large amounts of memory. Often Java

developers cease to worry about memory management, as the JVM‟s garbage collector will automatically

collect Java objects that can no longer be referenced. However, the Java specification does not require

that a JVM actually call the garbage collector whenever a Java object reference is no long used. It may or

may not do so, and it may choose to do so on its own schedule. Accordingly, you may want to actively

call the delete() or finalize() methods on resource-hungry objects when you are done with those

objects, rather than wait for the JVM to free them.

For most Netica objects, calling finalize() frees all their native resources, but not for Node and

State objects. For them, finalize() just indicates that you are done with the reference, but the native

resources won‟t be freed until the owning Net or Node is freed. However, calling Node.delete()

will remove the Node from its owning Net and free its resources, and calling State.delete() will

remove the State from its owning Node and free its resources.

Note, if you ever override the finalize() method of any Netica-J class, be certain that you always

call the base class finalizer method super.finalize() as your last instruction, so that Netica-J can

do its own housekeeping upon the Java object being collected. For example, if your class extends

norsys.netica.Streamer, and you need to override the finalize() method to perform special close-

down handling of files and such, then your finalize method would look something like this:

 /**
 * overrides Streamer.finalize().

 */

 public void finalize() throws NeticaException {

 . . . your own finalization logic . . .

 super.finalize();

 }

20 NETICA API JAVA VERSION 4.18

3 Probabilistic Inference

3.1 Bayes nets and Probabilistic Inference

A Bayes net (also known as a Bayesian network, BN, BBN, belief network, probabilistic causal network

or graphical model) captures our believed relations (which may be uncertain, or imprecise) between a set

of variables that are relevant to some problem. They might be relevant because we will be able to observe

them, because we need to know their value to take some action or report some result, or because they are

intermediate or internal variables that help us express the relationships between the rest of the variables.

Some Bayes nets are designed to be used only once for a single world situation. More often, Bayes nets

are designed for repetitively occurring situations. They may be constructed using expert knowledge

provided by some person, by an automatic learning process which examines many previous cases, or by a

combination of the two. If the net is to be used repetitively, then it may be considered as a knowledge

base. Sometimes nets that are built to be used only once are constructed automatically on-the-fly, perhaps

by pasting together pieces of nets from libraries using templates. Then the libraries and templates

together make up a knowledge base. Netica is designed to work for either type of application. It allows

probabilities to be entered directly, perhaps originally coming from an expert, and it can learn

probabilities from data. It will not handle templates directly, but it has the facilities for libraries and on-

the-fly construction that such a program requires.

A classic example of the use of Bayes nets is in the medical domain. Here each new patient typically

corresponds to a new case, and the problem is to diagnose the patient (i.e., find beliefs for the

undetectable disease variables), or predict what is going to happen to the patient, or find an optimal

prescription, given the values of observable variables (symptoms). A doctor may be the expert used to

define the structure of the net, and provide initial conditional probabilities, based on his medical training

and experience with previous cases. Then the net probabilities may be fine-tuned by using statistics from

previous cases, and from new cases as they arrive.

JAVA VERSION 4.18 NETICA API 21

When the Bayes net is constructed, one node is used for each scalar variable, which may be discrete,

continuous, or propositional (true/false). Because of this, the words "node" and "variable" are used

interchangeably throughout this manual, but "variable" usually refers to the real world or the original

problem, while "node" usually refers to its representation within the Bayes net.

The nodes are then connected up with directed links. Usually a link from node A (the parent) to node B

(the child) indicates that A causes B, that A partially causes or predisposes B, that B is an imperfect

observation of A, that A and B are functionally related, or that A and B are statistically correlated. The

precise definition of a link is based on conditional independence, and is explained in detail in an

introductory work like RussellNorvig95 or Pearl88. Finally, probabilistic relations are provided for each

node, which express the probability of that node having different values depending on the values of its

parent nodes.

After the Bayes net is constructed, it may be applied. For each variable we know the value of, we enter

that value into its node as a finding (also known as "evidence"). Then Netica does probabilistic inference

to find beliefs for all the other variables. Suppose one of the nodes corresponds to the variable

"temperature", and it can take on the values cold, medium and hot. Then an example belief for

temperature could be: [cold - 0.1, medium - 0.5, hot - 0.4], indicating the probabilities that the

temperature is cold, medium or hot. The final beliefs are sometimes called posterior probabilities (with

prior probabilities being the probabilities before any findings were entered). Probabilistic inference done

within a Bayes net is called belief updating.

Probabilistic inference only results in a set of beliefs at each node; it does not change the net (knowledge

base) at all. If the findings that have been entered are a true example that might give some indication of

cases which will be seen in the future, you may think that they should change the knowledge base a little

bit as well, so that next time it is used its conditional probabilities more accurately reflect the real world.

To achieve this you would also do probability revision, which is described in the "Learning From Case

Data" chapter. As well as regular probabilistic inference, Netica can do a number of other types of

inference, such as finding the most probable explanation (MPE), finding mutual information, solving

decision nets, node absorption, etc.

3.2 Netica's Probabilistic Inference

There are three ways that Netica can do regular probabilistic inference: by junction tree compiling, by

node absorptions, and by sampling. For most applications you will want to use the junction tree method,

because usually it is most convenient and executes much faster. You may want to use node absorptions

when you have some findings that are going to be repeated in many inferences (e.g. if you discover that

something is always true in the context of interest), or large parts of a network that are irrelevant to a

query, so can be pruned away. This section deals with junction trees; see the "Modifying Nets" chapter

22 NETICA API JAVA VERSION 4.18

for information on link reversals and node absorption. Sampling is an inexact method, and is usually used

only when the Bayes net is too large to compile into a junction tree, or there are continuous variables

whose value you want to provide by equation, and don‟t want to discretize. It is accomplished by calling

Net.generateRandomCase() many times (say 1000), with argument method=2

(FORWARD_SAMPLING), and recording what percentage of the cases resulted in the node of interest having

a given value.

Netica uses the fastest known algorithm for exact general probabilistic inference in a compiled Bayes net,

which is message passing in a junction tree (or "join tree") of cliques. This is based upon the work of

LauritzenSpiegelhalter88, which is described in much simpler and more extensive terms in CowellDLS99

and SpiegelhalterDLC93.

In this process the Bayes net is first "compiled" into a junction tree. The junction tree is implemented as a

large set of data structures connected up with the original Bayes net, but invisible to you as a user of

Netica. You enter findings for one or more nodes of the original Bayes net, and then when you want to

know the resultant beliefs for some of the other nodes, belief updating is done by a message-passing

algorithm operating on the underlying junction tree. It determines the resultant beliefs for each of the

nodes of the original Bayes net, which it attaches to the nodes so that you can retrieve them. You may

then enter some more findings (to be added to the first), or remove some findings, and when you request

the resultant beliefs, belief updating will be performed again to take the new findings into account.

The amount of memory required by the junction tree, and the speed of belief updating are approximately

proportional to each other, and are determined by the quality of the compilation. The quality of the

compilation depends upon the elimination order used, which is a list of all the nodes in the net. Any

order of the nodes will produce a successful compilation, but some do a much better job than others. You

may specify an elimination order (perhaps from your own program, or by using Netica Application‟s

“optimize compile”), or just let Netica API find a good one itself.

3.3 Example of Probabilistic Inference

Now let's look at an example of using the Netica API to do probabilistic inference. In this example we

will read in a simple Bayes net from a file, compile it into a form suitable for fast inference, enter some

findings, and see how the beliefs of a particular node change with each finding. The example program,

DoInference.java, can be found in the examples/ directory of the Netica-J installation.

The net we will use, called ChestClinic, is shown below. Although reasonable, it is a toy medical

diagnosis example from LauritzenSpiegelhalter88 that has often been used in the past for demonstration

purposes. To a certain degree, the links of the net correspond to causation. The two top nodes are

"predispositions" which influence the likelihood of the diseases in the row below them. At the bottom are

JAVA VERSION 4.18 NETICA API 23

symptoms for the disease. Each possible state of the node is shown in the box. Ignore the bars for now;

they were produced by the Netica Application program, and just show the probabilities of each state

before any findings have arrived.

Tuberculosis

present
absent

1.04
99.0

XRay Result

abnormal
normal

11.0
89.0

Tuberculosis or Cancer

true
false

6.48
93.5

Lung Cancer

present
absent

5.50
94.5

Dyspnea

present
absent

43.6
56.4

Bronchitis

present
absent

45.0
55.0

Visit To Asia

visit
no visit

1.00
99.0

Smoking

smoker
non smoker

50.0
50.0

Before the example program below will work, the file containing the net “ChestClinic.dne” must exist in

the “Data Files” subdirectory of the directory running the program. If you are running this example

straight from examples/ directory of the Netica API distribution, that will already be the case. Otherwise

you should obtain the file from the “examples/Data Files” directory of the Netica API distribution. Or

you can build it yourself; the next chapter shows how, and at the end of that chapter is a file listing of the

net (it is missing the Bronchitis and Dyspnea nodes, but they are not needed now anyway).

/*

 * DoInference.java

 *

 * Example use of Netica-J for doing probabilistic inference.

 */

import norsys.netica.*;

public class DoInference {

 public static void main (String[] args){

 try {

 Environ env = new Environ (null);

 // Read in the net created by the BuildNet.java example program.

 Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne"));

24 NETICA API JAVA VERSION 4.18

 Node visitAsia = net.getNode ("VisitAsia");

 Node tuberculosis = net.getNode ("Tuberculosis");

 Node xRay = net.getNode ("XRay");

 net.compile();

 double belief = tuberculosis.getBelief ("present");

 System.out.println ("\nThe probability of tuberculosis is " + belief);

 xRay.finding().enterState ("abnormal");

 belief = tuberculosis.getBelief ("present");

 System.out.println ("\nGiven an abnormal X-ray,\n" +

 "the probability of tuberculosis is " + belief);

 visitAsia.finding().enterState ("visit");

 belief = tuberculosis.getBelief ("present");

 System.out.println ("\nGiven an abnormal X-ray and a visit to Asia,\n" +

 "the probability of tuberculosis is " + belief + "\n");

 net.finalize();

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

}

The program starts by using new Environ() as described in the previous chapter. Next, new Net()

is used to read the file and create the net in memory. If you wish to have detailed descriptions of any of

these functions, remember that you can look them up in the javadocs.

You can see that the entire program is wrapped within single try/catch block. Most Netica-J API methods

throw NeticaException exceptions, if anything erroneous is attempted or results.

Next, net.compile() builds the junction tree of cliques and attaches it to the data structure of the

Bayes net, but does not discard any of the information from the original Bayes net. We can now use this

net to diagnose a new patient who has just entered the clinic.

In the next line Node.getBelief() is called to determine the probability tuberculosis is present:

 double belief = tuberculosis.getBelief ("present");

JAVA VERSION 4.18 NETICA API 25

This causes a "belief updating" to be done, which finds new beliefs for all the nodes in the net. This step

can be time consuming if the net is very large or highly connected. If Node.getBelief() is then called

for some other node, it would return almost immediately, because the calculated beliefs have been saved

at each node.

The program then prints out the probability of tuberculosis, which we can see is 1.04% from the listing of

the program output below. This is the probability that the new patient has tuberculosis before we know

anything else about him. The number may seem high, but then perhaps this net was built for people

entering a certain clinic, and many of them wouldn't be there unless they have some kind of illness.

An X-ray is taken of the patient, and it comes out "abnormal". A Bayes net to be used for anything

practical would define the X-ray outcome in more detail, but this will do for the example. We enter this

finding into the net with:

 xRay.finding().enterState ("abnormal");

Then we use Node.getBelief() to cause belief updating to occur again (to incorporate the latest

finding) and return the probability that the patient has tuberculosis given that his X-ray came out

abnormal. The probability has now jumped to 9.24%, so we ask him if he has recently made a trip to

Asia. When he answers to the affirmative, and we enter that finding, we then get a tuberculosis

probability of 33.8%.

Exercise for the Reader: After further testing you might discover that our patient has lung cancer, and

want to enter that as a finding. The lung cancer "explains away" the abnormal X-ray, and so our

probability that he has tuberculosis would fall to 5.00%. Try editing and running DoInference.java.

The output produced will be:

>java […] DoInference

The probability of tuberculosis is 0.0104

Given an abnormal X-ray,

the probability of tuberculosis is 0.0924109

Given an abnormal X-ray and a visit to Asia,

the probability of tuberculosis is 0.337716

Given abnormal X-ray, Asia visit, and lung cancer,

the probability of tuberculosis is 0.05

>

26 NETICA API JAVA VERSION 4.18

For examples involving more complex types of findings, and the retraction of findings, see the "Findings

and Cases" chapter.

JAVA VERSION 4.18 NETICA API 27

4 Building and Saving Nets

In the previous chapter we loaded a Bayes net into memory from a file and then did probabilistic

inference using it. Now we consider how to obtain the net file in the first place. Some possibilities are:

• Obtain a net file of interest from Norsys, another company or a colleague (by email, disk,

downloading from a website, etc.). The file is machine and operating system independent. For

examples of Bayes nets, see: http://www.norsys.com/netlibrary/index.htm

• Create the file using a text editor, according to the DNET file specification, or write a program that

creates the DNET text file.

• Use the Netica Application program to construct the net on the screen of your computer using

simple point-and-click drawing, and then save it to a file.

• Call functions in the Netica API to construct the net in memory. Once the net is in memory you

may use it for probabilistic inference, learning, etc., or you can save it to a file for later usage.

In this chapter we will discuss the last method. Below is a complete program which constructs the

ChestClinic net used in the previous chapter (except, to be more brief, it doesn't include the two nodes

Bronchitis and Dyspnea, which are not required for the inference examples of that chapter – but the code

in the examples directory does). This program, BuildNet.java, can be found in the examples/ directory of

your Netica-J installation.

/*

 * BuildNet.java

 *

 * Example use of Netica-J to construct a Bayes net and save it to file.

*/

import norsys.netica.*;

import norsys.neticaEx.aliases.Node;

public class BuildNet {

 public static void main (String[] args){

28 NETICA API JAVA VERSION 4.18

 try {

 Node.setConstructorClass ("norsys.neticaEx.aliases.Node");

 Environ env = new Environ (null);

 Net net = new Net();

 net.setName ("ChestClinic");

 Node visitAsia = new Node ("VisitAsia", "visit, no_visit”, net);

 Node tuberculosis = new Node ("Tuberculosis", "present, absent", net);

 Node smoking = new Node ("Smoking", "smoker, nonsmoker", net);

 Node cancer = new Node ("Cancer", "present, absent", net);

 Node tbOrCa = new Node ("TbOrCa", "true, false", net);

 Node xRay = new Node ("XRay", "abnormal, normal", net);

 visitAsia.setTitle ("Visit to Asia");

 cancer.setTitle ("Lung Cancer");

 tbOrCa.setTitle ("Tuberculosis or Cancer");

 visitAsia.state("visit").setTitle ("Visited Asia within the last 3 years");

 tuberculosis.addLink (visitAsia); // puts link from visitAsia to tuberculosis

 cancer.addLink (smoking);

 tbOrCa.addLink (tuberculosis);

 tbOrCa.addLink (cancer);

 xRay.addLink (tbOrCa);

 visitAsia.setCPTable (0.01, 0.99);

 smoking.setCPTable (0.5, 0.5);

 // VisitAsia present absent

 tuberculosis.setCPTable ("visit", 0.05, 0.95);

 tuberculosis.setCPTable ("no_visit", 0.01, 0.99);

 // Smoking present absent

 cancer.setCPTable ("smoker", 0.1, 0.9);

 cancer.setCPTable ("nonsmoker", 0.01, 0.99);

 // TbOrCa abnormal normal

 xRay.setCPTable ("true", 0.98, 0.02);

 xRay.setCPTable ("false", 0.05, 0.95);

JAVA VERSION 4.18 NETICA API 29

 tbOrCa.setEquation ("TbOrCa (Tuberculosis, Cancer) = Tuberculosis || Cancer");

 tbOrCa.equationToTable (1, false, false);

 Streamer stream = new Streamer ("Data Files/ChestClinicBuilt.dne");

 net.write (stream);

 net.finalize(); // free resources immediately and safely

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

}

First, the above program constructs a new empty net with new Net() and then adds each of the nodes

with new Node(). Each node represents some scalar variable of interest, either discrete or continuous.

The first string passed to the Node constructor is the name of the node, and the second is a comma-

delimited list of state names for that node. The states must be mutually exclusive (value can't be two

different states at the same time), and exhaustive (it is always in one of the states). Sometimes it is easiest

to satisfy the exhaustive condition by having a state called "other".

The names of the net, nodes and states are passed as Strings. These strings must meet the requirements of

an IDname, which are:

• The name must be between 1 and General.NAME_MAX (= 30) characters long, inclusive.

• The name must consist entirely of alphabetic characters (a-z and A-Z), digits and underscores ('_').

• The name must start with an alphabetic character.

• Often they must be unique within the object they apply to. Comparisons are case-sensitive.

In general, Netica restricts names for all objects in this way. If you find that overly restrictive, then you

can also give the object a "title", which is an unrestricted Unicode string. Some objects can have a

"comment" as well, which is also an unrestricted Unicode string, and it would not be out of the ordinary if

this were thousands of characters long.

The states do not need to be named, so instead of the list of state names, a "2" could be passed to Node()

indicating the number of states the node can take on (0 would be passed for a continuous node). Later,

the program could set the state names of the nodes using Node.setStateNames(). Or they could be

left unnamed, but in general it is recommended to name them in order to keep track of the meanings of

the states, and to be able to refer to the states by names, as was done in the last chapter. Then a couple of

30 NETICA API JAVA VERSION 4.18

nodes are given titles, which also aren't really required, but are a bit more descriptive than their names

(the idea is to keep names short for convenience).

Next, the nodes are linked together with Node.addLink(). A call of the form nodeC.addLink

(nodeP) makes nodeP a "parent" of nodeC, which means we wish to express the probabilities of nodeC

as a function of (i.e. "conditioned on") values of nodeP. Usually the link indicates that nodeP causes

nodeC, that nodeC is an imperfect observation of nodeP, or that the two nodes are statistically correlated.

Finally, the conditional probability tables (CPTs) are added. For each node, these are the probabilities of

each of its states, conditioned on the states of its parent nodes. They are built up by multiple calls to

NodeEx.setCPTable (which is defined in NodeEx.java as a convenient way to call

Node.setCPTable()). The first argument in each call is the names of the conditioning states of its

parents as a String. Finally comes a list of numbers, being the probabilities for each of the states of the

node.

For example: cancer.setCPTable ("smoker", 0.1, 0.9) means that the probability that cancer

is in its first state given that its parent is in state "smoker" is 0.1, and the probability that it's in its second

state is 0.9. In probabilistic notation: P(cancer=present | smoking=smoker) = 0.1

As another example, tbOrCa.setCPTable ("present", "absent", 1.0, 0.0) means:

P(TbOrCa=true | Tuberculosis = present, Cancer= absent) = 1.0

If "*" is used as the name of a conditioning state, then it will apply to all values of that parent node.

Likewise State.EVERY_STATE can be used with setCPTable().

There is one thing to be cautious of when using setCPTable. If speed is critical, and you must set large

probability tables, use Node.setCPTable() instead of NodeEx.setCPTable(). For example,

tbOrCa.setCPTable (TbOrCa, "present", "absent", 1.0, 0.0) could be accomplished

by:

 parentStates[0] = 0; parentStates[1] = 1; // present absent

 probs[0] = 1.0; probs[1] = 0.0;

 tbOrCa.setCPTable (parent_states, probs);

There is an even faster way to set the whole CPT table with one function call. You call

Node.setCPTable(double[] cptTable), the whole table for the probability array. The table you

pass in should be in row-major form with the last parent varying fastest (the same order the table is

displayed in the CPT editor of Netica Application).

If you wish to give a node a deterministic relationship, rather than probabilistic, you may use

Node.setStateFuncTable().

JAVA VERSION 4.18 NETICA API 31

Now the net is fully constructed in memory, and we could use it for inference, do net transforms, etc., but

in this example we just save it to a file for later use, by calling Net.write(). The resulting file is a pure

ASCII text file which can be read back by Netica API or by Netica Application, whether they are running

on the same computer or another type of computer. The file adheres to the DNET format, which is

described in the document "DNET File Format". It will look similar to the below:

// ~->[DNET-1]->~

bnet Built_ChestClinic {

 node VisitAsia {

 kind = NATURE;

 discrete = TRUE;

 states = (visit, no_visit);

 parents = ();

 probs =

 // visit no_visit

 (0.01, 0.99);

 };

 node Tuberculosis {

 kind = NATURE;

 discrete = TRUE;

 states = (present, absent);

 parents = (VisitAsia);

 probs =

 // present absent // VisitAsia

 (0.05, 0.95, // visit

 0.01, 0.99); // no_visit

 };

 node Smoking {

 kind = NATURE;

 discrete = TRUE;

 states = (smoker, nonsmoker);

 parents = ();

 probs =

 // smoker nonsmoker

 (0.5, 0.5);

 };

32 NETICA API JAVA VERSION 4.18

 node Cancer {

 kind = NATURE;

 discrete = TRUE;

 states = (present, absent);

 parents = (Smoking);

 probs =

 // present absent // Smoking

 (0.1, 0.9, // smoker

 0.01, 0.99); // nonsmoker

 title = "Lung Cancer";

 };

 node TbOrCa {

 kind = NATURE;

 discrete = TRUE;

 states = (true, false);

 parents = (Tuberculosis, Cancer);

 probs =

 // true false // Tuberculosis Cancer

 (1, 0, // present present

 1, 0, // present absent

 1, 0, // absent present

 0, 1); // absent absent

 title = "Tuberculosis or Cancer";

 };

 node XRay {

 kind = NATURE;

 discrete = TRUE;

 states = (abnormal, normal);

 parents = (TbOrCa);

 probs =

 // abnormal normal // TbOrCa

 (0.98, 0.02, // true

 0.05, 0.95); // false

 };

 };

The DNET file format is a text format, but Netica can also work with a binary format called NETA. The

binary files are much smaller, they usually read faster, and Netica can encrypt them. To save the above

net in NETA format, you would change the call to net.write() to be:

 net.write (new Streamer ("Built_ChestClinic.neta"));

That is, the call is exactly the same as for a DNET file, but the file name has an extension of .neta instead

of anything else. The Netica API call for reading the NETA file is the same as for a DNET file; Netica will

recognize each and handle it appropriately. If you wish, you can encrypt the net so that only software that

knows the password will be able to read it.:

JAVA VERSION 4.18 NETICA API 33

 Streamer stream = new Streamer ("Built_ChestClinic.neta");

 stream.setPassword ("MyPassword123");

 net.write (stream); // writes an encrypted file

Encryption is useful when you need to distribute the net with your application for Netica API to use, but

the net contains proprietary information. Encrypted nets can also be read (or created) by Netica

Application, provided that the user enters the correct password. For a full code example, including

reading encrypted files, see the javadocs for Streamer.setPassword().

There are a number of other functions that may be used when constructing a net. For a list of them, see

the "Low-Level Net Modification" section of the " Functions by Category" chapter, and for detailed

descriptions of each one, see the javadocs for the Net class.

For another example of constructing a net, which demonstrates how to build a decision net, create

decision and utility nodes, and work with 3-state and continuous nodes, see the "Decision Nets" chapter.

34 NETICA API JAVA VERSION 4.18

5 Findings and Cases

In the "Probabilistic Inference" chapter we saw how to enter positive findings into a Bayes net to do

probabilistic inference (findings are also known as “evidence”). A positive finding is the observation or

knowledge that some discrete node definitely has a particular value. However, we may discover that

some node definitely does not have some particular value, and not have any more information to help us

determine what value it does have. This is called a negative finding.

For example, say the node 'Temperature' can take on the values cold, medium, and hot. We may obtain

information that the temperature is not hot, although it doesn't distinguish between medium and cold at

all. This is a single negative finding. If later we receive another negative finding that the temperature is

not medium, then we can conclude that it is cold. So, several negative findings can be equivalent to one

positive finding.

A third type of finding is a soft finding (also known as “virtual evidence”) or likelihood finding . In this

case we receive uncertain information about the value of some discrete node. It could be from an

imperfect sensor, or from a friend who is not always right. Say we have a thermosensor to measure

'Temperature', which is designed so that when the temperature is hot it is supposed to turn on. In actual

practice we find that when the temperature is cold the sensor never goes on, when the temperature is

medium it goes on 10% of time, and when it is hot it always goes on. If at a certain time we observe the

sensor on, and want to enter this finding into the Temperature node, then we do so as a likelihood finding.

A likelihood finding consists of one probability for each state of the node, which is the probability that the

observation would be made if the node were in that state. For our temperature example, the likelihood

finding would be (0, 0.1, 1). A common mistake is to think that the likelihood is the probability of the

state given the observation made (in which case the numbers would have to add to one), but it is the other

way around.

A positive finding is equivalent to a likelihood finding consisting of all 0s except a single 1. A negative

finding is equivalent to a likelihood finding consisting of all 1s (or some other nonzero number) except a

single 0. Two independent findings for a node can be combined by component-wise multiplication of

their likelihood vectors. If they are not independent, and it is too inaccurate to approximate them as

JAVA VERSION 4.18 NETICA API 35

independent, then they should be combined by adding 2 child nodes to the observed node in the original

net, one for each observation, connecting them together to show the dependency, and then entering

positive findings for the child nodes.

Netica has functions for the direct entry of positive findings, negative findings, likelihood findings, and

also findings that a continuous node has a certain value. If several findings are entered for the same node,

then it combines them as if they were independent observations, and generates an error if they are

inconsistent. Checking for consistency between the findings of one node and those of another node

(given the inter-node relations encoded in the net), is only done if belief updating is done after each

finding is entered, which will be the case if the net is auto-updating (see Net.setAutoUpdate()) or if

Node.getBeliefs() is called between entering findings.

As an example, consider the following section of code to enter findings for node, which has 4 states:

 (a) int fst;

 (b) Node node;

 (c) float[] clike, belief;

 (d) float[] like = new float[4];

 (1) like[0] = 0.6F; like[1] = 0.6F; like[2] = 1.0F; like[3] = 1.0F;

 (2) node.finding().enterLikelihood (like);

 (3) node.finding().enterStateNot (1);

 (4) like[0] = 0.5F; like[1] = 0.6F; like[2] = 0.0F; like[3] = 0.5F;

 (5) node.finding().enterLikelihood (like);

 (6) clike = node.finding().getLikelihood();

 (7) // node.finding().enterState (2);

 (8) belief = node.getBeliefs()

 (9) fst = node.finding().getState();

 (10) node.finding().clear();

 (11) node.finding().enterState (2);

 (12) fst = node.finding().getState();

 (13) clike = node.finding().getLikelihood();

Step 1 sets up a likelihood vector, and step 2 enters it as a finding for node. The finding means that an

observation was made that would certainly be observed if node were in state 2 or 3, and that would

occur with probability 0.6 if node were in state 0 or 1. Step 3 enters a negative finding which means

"the value of node is not state 1". Steps 4 and 5 enter another likelihood finding, and then step 6

retrieves the likelihood vector for the accumulated findings so far. It will have the values:

 clike[0] = 0.3 clike[1] = 0.0 clike[2] = 0.0 clike[3] = 0.5

36 NETICA API JAVA VERSION 4.18

Notice that clike[1] is 0 due to the negative finding of step 3, and clike[2] is 0 due to the 0 in the

likelihood finding of steps 4&5.

Step 7 is commented out, but if it weren't it would generate an error because saying "the value of node

is state 2" is inconsistent with the likelihood finding of steps 4&5.

Step 8 causes a belief updating to be done, and it could return a belief vector with the following values:

 belief[0] = 0.9 belief[1] = 0.0 belief[2] = 0.0 belief[3] = 0.1

Even though the accumulated likelihood (clike) said state 3 was the most likely value for node, when

the findings for other nodes, and their relations with node, were taken into account, state 0 became more

probable than state 1. In general, it is not possible to determine anything about what the belief of a node

is going to be based just on its accumulated likelihood findings, except that states with a zero likelihood

will have a zero belief.

Step 9 demonstrates getState()being used to query what finding has been entered for node. It is

designed to retrieve positive findings, and since node has likelihood findings, it will just return the

constant Value.LIKELIHOOD_VALUE.

Step 10 retracts all the findings that have been entered for node, thereby undoing all of the above, and

step 11 enters the positive finding that the value of node is state 2, which won't generate an error this

time like it would have in step 7. When getState() is called in step 12, it will now return 2, and the

values of clike after step 13 will be:

 clike[0] = 0.0 clike[1] = 0.0 clike[2] = 1.0 clike[3] = 0.0

5.1 Cases and Case Files

The set of all findings entered into the nodes of a single Bayes net is referred to as a case. A case may be

saved to a file for later retrieval. Case files may consist of a single case, or of many cases. Case files act

as databases; they may be used to swap cases in and out of a net as additional findings are obtained or

beliefs required, to transfer a case from one net to another, or as data to learn a new net.

Some ways you can make a case file are:

• Use a text editor to manually construct it, according to the specification below.

• Write a program whose output is a case file.

• Export it (as a CSV or tab-delimited text file) from a spreadsheet or database program. Or you can

copy from the spreadsheet or database program, paste into a text editor, and save as a text file.

JAVA VERSION 4.18 NETICA API 37

• Extract it from a database using Caseset.addCases (DatabaseManager, …) followed by

Caseset.writeCases(…)

• Use Netica Application to enter findings by pointing and clicking, and then choose "Save Case"

from the menu.

• Call Netica API functions to enter the case as findings into a Bayes net, write the case to a file, and

repeat for each case to be put in the file.

Case files (single-case or multi-case) are pure ASCII text files. They may contain

// ~->[CASE-1]->~ somewhere in the first 3 lines, to indicate to Netica what the file contains, but

that isn‟t required. Then comes a line consisting of headings for the columns. Each heading corresponds

to one variable of the case, and is the name of the node used to represent the variable (sometimes the

variables are called attributes and the entries in the column values, i.e. attribute-value). The headings are

separated by spaces and/or tabs (it doesn't matter how many).

The case data is next, with one case per line (a single-case file would only have one such line). The

values of the variables are in the same order as the heading line, and are separated by spaces or tabs (the

columns don't have to "line up" as they do in the example files below). The value of a discrete variable is

given by its state name, or if it doesn't have a state name, then by the number symbol, followed by its

state number (e.g. #3). The state names are preferred, since the order of the states may be changed some

time, and that would render the file invalid.

The value of a continuous variable is given by a number, expressed as an integer, decimal, or in scientific

notation (e.g. -3.21e-7). If the variable has been discretized, then the value may be given by a state name

or state number, but the continuous number is preferred if it is available. That way, the case file can be

used for different discretizations of that variable in the future. Try to use the correct number of

significant figures, since future versions of Netica may use this information.

A single-case file is the same as one with multiple cases, except it just has 1 case. There may be as much

whitespace as desired between the lines, including Java/C/C++ style comments. If the values of some of

the variables are unknown for some of the cases, then a question mark or asterisk (? or *) is put in the

file instead of the value (this is known as missing data).

If you read in a case, and the case file has a node value that doesn't correspond to any state of that node in

the net (e.g. the states of net node 'color' are 'red' and 'green', and the value for color in the case file is

'blue'), then an error will be generated. An exception to this is if one of the states of the net node is called

"other". Then the case will be read without error, and the finding for the node will be 'other'.

There are two special columns that a file may have which don't correspond to nodes. One provides an

identification number for each case, which must be an integer between 0 and 2 billion. The heading for

this column is "IDnum". Identification numbers do not have to be in order through the file. The other

38 NETICA API JAVA VERSION 4.18

special column has the heading "NumCases", and indicates the frequency or multiplicity of the case. A

multiplicity of m indicates m cases with the same variable values. It is not required to be an integer, so it

can be used to represent a frequency of occurrence if desired. The missing data symbol ("*") should not

appear in either of these columns if they exist.

As an example of a case file, here is a listing of "ChestClinic.cas" which is produced by the program

SimulateCases.java, listed below and included in the examples/ directory of your distribution. Note that

the case file you obtain may be a little different, since random numbers are involved. It has an IDnum

column, but no frequency column.

IDnum VisitAsia Tuberculosis Smoking Cancer TbOrCa XRay Bronchitis Dyspnea

1 no_visit present smoker absent true abnormal absent present

2 no_visit absent smoker absent false normal present present

3 no_visit absent smoker present true abnormal present present

4 no_visit absent nonsmoker absent false normal absent absent

5 no_visit absent smoker present true abnormal present present

6 no_visit absent smoker absent false abnormal present present

....

198 no_visit absent smoker absent false normal present present

200 no_visit absent smoker present true abnormal present present

Here is listing of SimulateCases.java, the program which generated the above case file:

/*

 * SimulateCases.java

 *

 * Example use of Netica-J for generating random cases that follow

 * the probability distribution given by a Bayes net.

 */

import java.io.File;

import norsys.netica.*;

public class SimulateCases {

 public static void main (String[] args){

 int numCases = 200;

 System.out.println ("Creating " + numCases + " random cases...");

 try {

 Environ env = new Environ (null);

 // Read in the net created by the BuildNet.java example program.

JAVA VERSION 4.18 NETICA API 39

 Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne"));

 NodeList nodes = net.getNodes();

 (new File ("Data Files/ChestClinic.cas")).delete(); // since "ChestClinic.cas" may

 // exist from a previous run and we do not wish to append

 Streamer caseFile = new Streamer ("Data Files/ChestClinic.cas");

 net.compile();

 for (int n = 0; n < numCases; n++) {

 net.retractFindings();

 int res = net.generateRandomCase (nodes, 0, 20);

 if (res >= 0)

 net.writeFindings (caseFile, nodes, n, -1.0);

 net.finalize();

 }

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

First the program reads in the same net that we built in the “Building and Saving Nets” chapter. Then it

deletes a file named "ChestClinic.cas" if there is one (otherwise it would try to add the cases to this file).

Then, in a loop repeated 20 times it generates a random case from the ChestClinic net. These cases will

be distributed according to the probability distribution of that net. Each case is saved to the case file

named "ChestClinic.cas", a sample of which we saw above. We will use this case file in the next chapter,

“Learning From Case Data”.

Here is another example of a case file, this time for cars brought into a garage (notice BatAge, which is a

continuous variable):

// ~->[CASE-1]->~

Starts BatAge Cranks Lights StMotor SpPlug MFuse Alter BatVolt Dist PlugVolt Timing

false 5.9 false off ? fouled okay ? dead ? ? good

false 1.3 false off ? okay okay ? dead ? none bad

false 5.2 false off okay okay okay okay dead okay none good

true 4.1 true bright ? okay okay ? strong okay strong ?

true 2.7 ? bright ? wide okay ? strong okay ? ?

? ? true bright ? fouled okay ? ? okay strong good

false 1.7 true off okay okay okay okay dead ? none good

true 2.9 true bright ? ? ? ? strong okay strong ?

40 NETICA API JAVA VERSION 4.18

5.2 Casesets

Netica-J has a very powerful class called Caseset. A Caseset instance represents a set of cases that may

be in a database, in memory or in a disk file (in any of a number of formats). You use the same functions

to operate on Casesets no matter where they are or in what format they are.

To make a Caseset, you first create an empty one with one of the Caseset constructors. For example:

 Caseset cs = new Caseset();

Then you add cases to the Caseset. If you want them to come from a database, you use

Caseset.addCases (DatabaseManager, …), as described in the next section. Alternatively, you

can add cases from a text file of cases in the format described in the previous section. You first create a

Streamer that refers to the file, using new Streamer ("yourFile.cas"). If you are creating the

case file dynamically, it is probably much more efficient to just create it in a memory buffer, say a byte

array, and then create the new Streamer (new ByteArrayInputStream (yourByteArray))

instead. Then you add the cases within it to the Caseset using:

 Caseset.addCases (Streamer streamer, double degree, String control);

With the current version of Netica, you can only add cases to a Caseset once.

You can write all the cases in a Caseset to a file with:

 Caseset.writeCases (Streamer file, String control);

That can be used to extract the cases from a database, and then write them out to a text file.

You can use Learner.learnCPTs() to learn the conditional probability tables of a Bayes net from a

Caseset, as described in the Learning chapter. Future versions of Netica will have many more operations

available for Casesets.

When you are done with the Caseset, you may reduce the resources required by calling:

 Caseset.finalize();

5.3 Connecting with a Database

Netica can connect with a database (such as that created by Microsoft SQL Server, Microsoft Access,

MySQL or Oracle), and use the data within to learn a Bayes net, performance test a Bayes net, etc. First

you create a DatabaseManager instance using:

 DatabaseManager (String odbcConnectionString, String control, Environ env);

JAVA VERSION 4.18 NETICA API 41

The connection string has information on the file location of the database, the driver to use (depending on

whether MySQL, MS Access, etc.), any password required to access the database, etc, as described in the

javadocs for the DatabaseManager constructor.

Now that you have the database manager, you can use it to execute whatever SQL commands you would

like on the database, using:

 void DatabaseManager.executeSQL (String sqlCmd, String control);

If you wish to put all the findings currently entered into a Bayes net as a new record of the database, use:

 void DatabaseManager.insertFindings (NodeList nodeList, String columnNames,

 String tables, String control);

Where ColumnNames is a list of columns in the database table to map to the list of nodes nodeList.

To use the database with Netica functions (such as learning from data), you first create an empty Caseset

instance and then add the database to it with:

 void Caseset.addCases (DatabaseManager dbMgr,

 double degree, NodeList nodeList,

 String columnNames, String tables,

 String condition, String control);

Then the resulting Caseset can be used as described in the “Caseset” section.

The previous two functions assumed that the Bayes net already had nodes that correspond to columns of

the database (to form the nodeList parameter for them). If it doesn‟t, then you can create the nodes with:

 void DatabaseManager.addNodes (Net net, String columns, String tables, String condition, String
control)

When you are done with the database manager, you may close the connection and free resources by

calling:

 void DatabaseManager.finalize();

Here is an example program to learn Bayes net CPT tables from a database. For more explanation on

learning, see the next chapter, and especially a similar code example in the “EM and Gradient Descent

Learning” section.

 DatabaseManager db =

 new DatabaseManager ("driver=Microsoft Access Driver (*.mdb); dbq=.\\myDB.mdb;UID=dba1;",

 "pooling", env);

 Net net = new Net();

 // ... Put code to add nodes and links to net here ...

42 NETICA API JAVA VERSION 4.18

 // You could use DatabaseManager.addNodes();

 NodeList nodes = net.getNodes();

 Caseset cs = new Caseset();

 cs.addCases (db, 1.0, nodes,

 "Sex, Height, \"Owns a house\", \"Number of dogs\"",

 null, "'Owns a house' = 'yes'", null);

 Learner learner = new Learner (Learner.EM_LEARNING, null, env);

 learner.learnCPTs (nodes, cs, 1.0);

 cs.finalize();

 db.finalize();

5.4 Case Files with Uncertain Findings

The case files discussed so far have only had values that were completely certain (or completely missing).

But Netica can also create and read case files having values that are known with limited accuracy, or only

known to within some likelihood. In fact, Netica has a very elegant, practical and powerful way of

expressing uncertain findings, known as the UVF file format.

When Netica reads in a case containing uncertain findings (for example, by Net.readFindings()), it

will enter them into the Bayes net as soft findings, so any probabilistic inference, node absorption,

sensitivity analysis, etc. will properly account for them. Also, the operations on case files, such as

learning from cases, test net with cases and process cases, will work properly on case files containing

uncertain values. When learning from such cases, some learning algorithms will work better than others.

For more information on that, and an example of working with case files having uncertain findings, see

the “EM and Gradient Descent Learning” section in the next chapter.

Below is a list of the different types of uncertain findings, their syntax in the case file, and what they

mean. Each type of uncertain finding can appear anywhere in a case file where a regular finding normally

would. For example, a UVF file could be a regular case file (as described in earlier sections), a CSV file,

or tab delimited text file, but with some of the values replaced with entries having the syntax described

below.

Gaussian

Syntax: m+-s m and s are real numbers

Examples: 5+-2 3.27+-0.03 0+-1e-5

JAVA VERSION 4.18 NETICA API 43

This is for a Gaussian (also known as “normal”) soft finding, where the m is the mean and s is the

standard deviation. Note that there cannot be any space before or after the +-. The uncertainties in

measurements from lab instruments, or polling results, are often expressed with a +- notation, and

indicate a Gaussian distribution, so they can be easily input into Netica (although in some contexts they

may indicate an interval distribution, which is described below).

Interval

Syntax: [a, b] a and b are real numbers, state names or state indexes preceded by #

Examples: [0, 10] [-3, 2.27] [lo, med] [#1, #3]

This finding indicates the value is known to be within the two endpoints. There may be spaces before or

after the comma or brackets. Intervals of states include both endpoints, so [lo, med] includes states lo,

med and any states between. Intervals of continuous variables include the lower endpoint, but not the

upper endpoint, so [0, 10] for variable X means 0 ≤ X < 10. Likelihood within the interval is one;

outside the interval it is zero.

Unbounded Interval

Syntax: >b or <b b is a real number, state name or state index preceded by #

Examples: >4.75 <-10 <med >#2

This finding indicates that the value is above a certain point, or below a certain point. When b is a state,

the interval includes the endpoint; when it is for a continuous variable, the interval includes the endpoint

only for > intervals (so > is really ≥). The interval can potentially extend to infinity, but in practice will

be limited by known maximum values for the variable. Likelihood within the interval is one; outside the

interval it is zero.

Set of Possibilities

Syntax: {s1, s2, … sn} each si is a state name, state index preceded by #, Gaussian, interval

or unbounded interval

Examples: {lo, med} {red, blue, yellow} {#5, #7, #1}

 {[0,3.5], [4.5, 10]} {[#35,#122], >#500}

This finding indicates the value is known to be one of a listed set of possibilities. There may be spaces

before or after the comma or brackets. The finding can be considered to be a disjunction of the elements.

So if there is only 1 element {x}, the value is known to be that element, and it can be written as just x.

The likelihood of elements in the set is one, of those not in the set is zero.

44 NETICA API JAVA VERSION 4.18

Set of Impossibilities

Syntax: ~{s1, s2, … sn} each si is a state name, state index preceded by #, interval or

unbounded interval

Examples: ~{lo} ~{black, orange, green} ~{#5, #7, #1}

 ~{[0, 3.5]}

This finding indicates the value is known to not be any of a listed set of possibilities. There may be

spaces before or after the comma or braces, but not between the tilde (~) and the brace. This is the same

as "Set of Possibilities" except the "possible" states are those that are not listed, rather than those that are

listed. The likelihood of elements in the set is zero; of those not in the set, it is one.

A negative finding can be represented easily by just listing the state(s) eliminated by the observation.

Likelihood

Syntax: {s1 p1, s2 p2, … sn pn} each si is a state name, state index preceded by #,

Gaussian, interval or unbounded interval. Each pi is a

number between 0 and 1. Some pi may be absent.

Examples: {female .8, male .3} {3+-1 0.2, 7+-2 0.4}

 {[0,3.5] .05, [3.5,10] 0.1, other 0.5}

This is the same as a set of possibilities, but each possibility is weighted with a likelihood that appears

after it (separated by a space). Since the numbers are likelihoods, they do not need to sum to one. The

most common type of likelihood vectors are for discrete variables, where each state is listed, followed by

its likelihood. Any states that appear without a number have a likelihood of 1, and any states that don't

appear at all have a likelihood of 0.

Arbitrary likelihood distributions for continuous variables can be formed by a series of adjacent intervals,

each with its own probability. Or the elements can overlap, and then their likelihoods are combined. For

example {[0,10] .1, [2,4] .2} would be the combination of a rect function extending from 0 to 10 with

height 0.1, and another rect from 2 to 4 with a height of 0.2.

Another useful distribution that is easy to form is a weighted combination of Gaussians. For example

{3+-1 0.2, 7+-2 0.4} is a bi-modal distribution with peaks at 3 and 7.

It is possible to mix weighted Gaussians, intervals, and discrete states within a single { ... } likelihood

vector.

JAVA VERSION 4.18 NETICA API 45

Scaled Likelihood

Syntax: ~{s1 p1, s2 p2, … sn pn} each si is a state name, state index preceded by #,

interval, or unbounded interval. Each pi is a positive

number. Some pi may be absent.

Examples: ~{red, green, orange .2, yellow .8}

 ~{[0,2] .4, [2,6] .2}

This is like a set of impossibilities, but with each entry weighted by a number, which appears after it. If

no number appears after it, its likelihood is 0. Entries that have numbers above 1 are indicated to be more

probable than those not listed, and entries with numbers below 1 are less probable than the unlisted ones

(unlisted entries have a likelihood of 1).

Complete Uncertainty

Syntax: * just an asterisk

If nothing is known regarding the value of this variable (i.e. missing data), then a question mark ? or an

asterisk * should be used to indicate that. It is equivalent to ~{} which is a likelihood of all ones.

Complete Certainty

Syntax: v v is a real number, state name, or state index preceded by #

Of course, any finding of complete certainty may be represented in the usual way, which is simply the

value it is known to be. Likelihood for that value is 1, and for all others 0.

46 NETICA API JAVA VERSION 4.18

6 Learning From Case Data

Bayes net learning is the process of automatically determining a representative Bayes net given data in

the form of cases (called the training cases). Each case (i.e. “record”) represents an example, event,

object or situation in the world (presumably that exists or has occurred), and the case supplies values for a

set of variables which describes the event, object, etc, as specified in the previous chapter. Each variable

will become a node in the learned net (unless you want to ignore some of them), and the possible values

of that variable will become the node‟s states.

The learned net can be used to analyze a new case which comes from the same (or appropriately similar)

world as the training cases did. Typically the new case will provide values for only some of the variables.

These are entered as findings, and then Netica does probabilistic inference to determine beliefs for the

values of the rest of the variables for that case. Sometimes we aren't interested in values for all the rest of

the variables, but only some of them, and we call the nodes that correspond to these variables target

nodes. If the links of the net correspond to a causal structure, and the target nodes are ancestors of the

nodes with findings, then you could say that the net has learned to do diagnosis. If the target nodes are

descendants, then the net has learned to do prediction, and if the target node corresponds to a "class"

variable, then the net has learned to do classification. Of course the same net could do all three, even at

the same time.

The Bayes net learning task has traditionally been divided into two parts: structure learning and

parameter learning. Structure learning determines the dependence and independence of variables and

suggests a direction of causation, in other words, the placement of the links in the net. Parameter

learning determines the conditional probability table (CPT) at each node, given the link structures and the

data. Currently Netica only does parameter learning (i.e., you link up the nodes before learning begins).

However, you can use Netica to do structure learning by writing your own small program that tests a

number of candidate link structures to find the best one. You write a function which searches through

some candidate link structures that are plausible and practical in your domain, perhaps also adding trial

latent variables. For each structure you use Netica‟s parameter learning functions described in this

JAVA VERSION 4.18 NETICA API 47

chapter, then test the resulting net with Netica‟s net testing functions also described in this chapter. The

net that scores the highest (perhaps penalized for complexity) is the best structure.

You might not want Netica to learn the CPTs of all the nodes in your Bayes net. Some of the nodes may

have CPTs that have already been learned well, were created manually by an expert, or are based on

theoretical knowledge of the problem at hand (perhaps expressed by an equation). Netica allows you to

restrict the learning process to a subset of the nodes, and those nodes are called the learning nodes.

If every case supplies a value with certainty for each of the variables, then the learning process is greatly

simplified. If not, there are varying degrees of partial information:

1. If there is a variable for which none of the cases have any information, that variable is known as a

latent variable or “hidden variable”.

2. If some cases have values for a certain variable, and others don‟t, that is known as missing data.

3. Some values for variables may not be given with certainty, but only as soft findings.

It may seem strange to be learning a net that has latent variables, since none of the training cases have any

information on them. You introduce a latent variable as a parent node (or intermediate node) of multiple

child nodes, and Netica uses the correlations among the children to determine relationships between the

latent node with others. The result may be a Bayes net that is actually simpler (has fewer CPT entries),

and generalizes better (i.e. performs better on new cases seen). For an example of using Netica to learn a

latent variable, see the “Learn Latent.dne” net in the examples folder of the Netica Application

distribution, or get it from the Norsys net library.

6.1 Algorithms

There are three main types of algorithms that Netica can use to learn CPTs: counting, expectation-

maximization (EM) and gradient descent. Of the three, “counting” is by far the fastest and simplest, and

should be used whenever it can. It can be used whenever there is not much missing data or uncertain

findings for the learning nodes or their parents. When learning the CPT of a node by counting, Netica

will only use those cases which supply values of certainty for the node and all of its parents. Obviously,

if any of those are latent nodes, counting will not work.

If you can‟t use counting, then you must use EM learning or gradient descent. For each application area,

it is usually best to try each one to see which gives the better results. Generally speaking, EM learning is

more robust (i.e., gives good results in wide variety of situations), but sometimes gradient descent is

faster. For all three algorithms, the order of the cases doesn‟t matter.

48 NETICA API JAVA VERSION 4.18

During Bayes net learning, we are trying to find the maximum likelihood Bayes net, which is the net that

is the most likely given the data. If N is the net and D is the data, we are looking for the N which gives

the highest P(N|D). Using Bayes rule, P(N|D) = P(D|N) P(N) / P(D). Since P(D) will be the same for all

the candidate nets, we are trying to maximize P(D|N) P(N), which is the same as maximizing its

logarithm: log(P(D|N)) + log(P(N)). Below we consider each of the two terms of this equation. The

more data you have, the more important the first term will be compared to the second.

There are different approaches to dealing with the second term log(P(N)), which is the prior probability of

each net (i.e. how likely you think each net is before seeing any data). One approach is to say that each

net is equally likely, in which case the term can simply be ignored, since it will contribute the same

amount for each candidate net. Another is to penalize complex nets by saying they are less likely (which

is of more value when doing structure learning). Netica bases the prior probability of each net on the

experience and probability tables that exist in the net before learning starts, which appears to be a unique

and elegant approach. If the net has not been given any such tables, then Netica considers all candidate

nets equally likely before seeing any data.

The first term log(P(D|N)) is known as the net‟s log likelihood , If the data D consists of the n

independent cases d1, d2, … dn, then the log likelihood is: log(P(D|N)) = log(P(d1|N) P(d2|N) … P(dn|N))

= log(P(d1|N)) + log(P(d2|N)) + … + log(P(dn|N)). Each of the log(P(di|N)) terms is easy to calculate,

since the case is simply entered into the net as findings, and Netica‟s regular inference is used to

determine the probability of the findings.

Both EM and gradient descent learning work by an iterative process, in which Netica starts with a

candidate net, reports its log likelihood, then processes the entire case set with it to find a better net. By

the nature of each algorithm the log likelihood of the new net is always as good as or better than the

previous. That process is repeated until the log likelihood numbers are no longer improving enough

(according to a tolerance that you can specify), or the desired number of iterations has been reached (also

a quantity you can specify). Netica uses a conjugate gradient descent, which performs much better than

simple gradient descent.

To understand how each algorithm works, it is best to consult a reference, such as Korb&Nicholson04,

Russell&Norvig95 or Neapolitan04. Briefly, EM learning repeatedly takes a Bayes net and uses it to find

a better one by doing an expectation (E) step followed by a maximization (M) step. In the E step, it uses

regular Bayes net inference with the existing Bayes net to compute the expected value of all the missing

data, and then the M step finds the maximum likelihood Bayes net given the now extended data (i.e.

original data plus expected value of missing data). Gradient descent learning searches the space of Bayes

net parameters by using the negative log likelihood as an objective function it is trying to minimize.

Given a Bayes net, it can find a better one by using Bayes net inference to calculate the direction of

steepest gradient to know how to change the parameters (i.e. CPTs) to go in the steepest direction of the

gradient (i.e. maximum improvement). Actually, it uses a much more efficient approach than always

JAVA VERSION 4.18 NETICA API 49

taking the steepest path, by taking into account its previous path, which is why it‟s called conjugate

gradient descent. Both algorithms can get stuck in local minima, but in actual practice do quite well,

especially the EM algorithm.

Most neural network learning algorithms (such as backpropagation and its improvements) are gradient

descent algorithms. That invites a comparison between Bayes net learning and neural net learning, with

latent variables corresponding to hidden neurons. In the case of Bayes net learning, there are generally

fewer hidden nodes, the learned relationships between the nodes are generally more complex, the result of

the learning has a direct physical interpretation (by probability theory) rather than just being black-box

type weights, and the result of the learning is more modular (parts can be separated off and combined

with other learned structures).

6.2 Experience

There has been considerable controversy over the best way to represent uncertainty, with some of the

suggestions being probability, fuzzy logic, belief functions, Dempster-Shafer, etc. Currently probability

and fuzzy logic are the most practical methods. Of these two, probability has a much sounder theoretical

basis (at least with respect to the way they are actually used). However, a deficiency of using nothing but

probability is the inability to represent ignorance in an easy way.

As an example, suppose you had to draw a ball from a bag full of black and white balls and you couldn't

tell how many white balls and how many black balls there were in the bag. If you had to supply a

probability that you were going to draw a white ball, it would be 0.5 providing you had no additional

information.

Contrast this with the case where you can count the balls in the bag beforehand (there are 10 of each), and

you will shake the bag before you draw. In this situation the probability of drawing a white ball is 0.5,

but whereas in the first case you were in a state of ignorance, now you feel much more informed.

If you needed to do probabilistic inference or solve decision problems as in the previous chapters, then the

0.5 probability would be sufficient in either situation. In both situations you should believe and act as if

there was an equal chance of drawing a white or a black ball. So the concept of experience is not required

for these types of problems, and you do not have to be able to represent ignorance (ignorance is the

endpoint of the experience spectrum). However, for learning and communicating knowledge, it is useful

to be able to represent the degree of experience as well as the probability, as we shall see.

If you are going to sequentially draw a number of balls from the bag, then things are different. If you

drew 4 white balls in a row, then in the first situation your probability that the next ball will be white

should be greater than 0.5, because you are learning (perhaps incorrectly) that there seem to be a lot of

50 NETICA API JAVA VERSION 4.18

white balls. In the second situation your probability of the next ball being white should be less than 0.5,

because you know that now there are more black than white balls in the bag (10 black and 6 white).

One way to handle this using just probabilities is to keep track of your beliefs about the ratio of white to

black balls in the bag. Then you will have many probabilities, one for each possible ratio. Each of these

probabilities will change as you draw a ball, and when you are asked to supply a probability that the next

ball drawn will be white, they will all be involved in the calculation. This is sometimes called second

order probabilities, but here it is really just a probability distribution over possible ratios. If you

discretized the possible ratios then it would be easy to set up a Bayes net for this, with the ratio being one

of its nodes. That approach works fine for this simple problem, but you can imagine that if you had many

interrelated variables, that it could become too cumbersome.

If during the learning we consider the conditional probabilities being learned to be independent of each

other, and the prior distribution to be Dirichlet, then we can use beta functions to represent the

distributions over "probabilities". Each beta function requires 2 parameters to be fully specified, and

Netica uses a probability number and an experience number. This way true Bayesian learning of the

probabilities is easy to do, since it is easy to express how the beta function should change to account for a

new case (i.e., it is easy to find the posterior beta function, given the prior one and the case). In fact, that

is what the simple equation at the end of this section does.

At each node Netica stores one experience number for each possible configuration of states of the parent

nodes, and with it a vector of probabilities (one probability for each state of the node). The experience

level corresponds roughly to the number of cases that have been seen (normally it is 1 more than the

number of cases). This experience has sometimes been called the "estimated sample size" or "ess". To

save space, Netica doesn't store experience numbers for nodes that haven't been involved in any learning

and haven't had a manual entry of experience.

6.3 Counting Learning

Before learning begins (providing there has been no previous learning or entry of probabilities by an

expert) the net starts off in a state of ignorance. All probabilities start as uniform, and experience starts

off as the number of states of the node (which is like a single 1 in each unnormalized CPT cell). If you

would rather that it started from some different value, then you can use Node.setExperTable() to

initialize the experience values before learning starts, but then you must also initialize the CPTs to

uniform. A different way is to apply a simple correction at the end of the learning, which does the same

as Netica Application‟s Table → Harden function.

For each case to be learned the following is done. Only nodes for which the case supplies a value

(finding), and supplies a value for all its parents, have their experience and conditional probabilities

JAVA VERSION 4.18 NETICA API 51

modified (i.e., no missing data for that node). Each of these nodes are modified as follows. Only the

single experience number, and the single probability vector, for the parent configuration which is

consistent with the case is modified. The new experience number (exper') is found from the old (exper)

by:

exper' = exper + degree

where degree is the multiplicity of the case (passed to the learning routine). It is normally 1, but is

included so that you can make it 2 to learn two identical cases at once, or -1 to "unlearn" a case, etc.

Within the probability vector, the probability for the node state that is consistent with the case is changed

from probc to probc' as follows:

probc' = (probc * exper + degree) / exper'

The other probabilities in that vector are changed by:

probi' = (probi * exper) / exper'

which will keep the vector normalized (exper' and exper act as the new and old normalization factors).

6.4 How To Do Counting-Learning

There are two ways to do counting-learning from cases: singly (one-by-one) or in batch mode.

Here is how you learn from a single case. If the case is not already in the Bayes net, you enter it into the

net as findings (see the "Findings and Cases" chapter). Then Net.reviseCPTsByFindings() is

called with a list of nodes. Nodes not present in the list passed will not have their probabilities revised, so

normally it will be a list of all the nodes in the net. Nodes in the list for which the case provides sufficient

data will have their probabilities revised a small amount to account for the case, and their experience

levels increased slightly as well.

The batch mode way of revising probabilities does exactly the same thing as the one-by-one way, but for

a whole file of cases at once. You call Net.reviseCPTsByCaseFile() with the file and the same list

of nodes as before, and it does the same thing as the one-by-one method for each of the cases in the file,

only much more efficiently than if you were to read in the cases one-by-one and call

Net.reviseCPTsByFindings() each time. See the "Findings and Cases" chapter for more

information on creating a file of cases.

If the case file has a node value that doesn't correspond to any state of that node in the net (e.g. the states

of net node 'color' are 'red' and 'green', and the value for color in the case file is 'blue'), then an error will

52 NETICA API JAVA VERSION 4.18

be generated. An exception to this is if one of the states of the net node is called "other". Then the case

will be read without error, and the finding for the node will be 'other'.

6.5 Example of Counting-Learning

The program below, LearnCPTs.java, will demonstrate learning from cases. This program can be found

in the examples/ directory of your Netica-J distribution. The program operates by first reading from file a

very simple example net (the net that was constructed in the "Building and Saving Nets" chapter), and

then duplicates it by making a new net and duplicating all the nodes into it. Next it removes the

probabilities and experience from the duplicated nodes with Node.deleteTables(). The idea is to

relearn approximations of those probabilities by using the case file “ChestClinic.cas” that we created in

the last chapter, “Findings and Cases”. In effect, we start with a net that has the structure of

ChestClinic.dne, but no probabilities and experience (since they were deleted), and then using a set of

cases that match the probability distribution of that net, we will learn a net that should have a similar

probability distribution. Of course, the more samples that are in the case file, the better the approximation

to the original net.

The program reads all the cases with a single instruction:

 reviseCPTsByCaseFile (casefile, learned_nodes, 1.0);

If instead we wanted to examine each case, say to exclude outliers, perform calculations on them, or

otherwise modify them, we could have looped through the case file, entering each as a finding, and used

the instruction

 reviseCPTsByFindings (learned_nodes, 1.0);

to incrementally adjust the CPTs. The comment section at the bottom of LearnCPTs.java shows you how

to use this alternate approach.

Finally, the program concludes by saving the new net to file, so that we can compare it with the old. It

will be similar, but the probabilities won't be quite the same. The more cases we put in the case file, the

more similar the learned net will be to the original. Of course, in a real application there would be no

point in relearning a net which already existed; you would use a case file that had real cases in it. But this

demonstration is good to show that the new net comes out similar to the old.

/*

 * LearnCPTs.java

 *

 * Example use of Netica-J for learning the CPTs of a Bayes net from a file of cases.

 */

import java.io.File;

JAVA VERSION 4.18 NETICA API 53

import norsys.netica.*;

public class LearnCPTs {

 public static void main (String[] args){

 try {

 Environ env = new Environ (null);

 // Read in the net created by the BuildNet.java example program.

 Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne"));

 NodeList nodes = net.getNodes();

 int numNodes = nodes.size();

 // Remove CPTables of nodes in net, so new ones can be learned.

 for (int n = 0; n < numNodes; n++){

 Node node = nodes.getNode (n);

 node.deleteTables();

 }

 // Read in the case file created by the SimulateCases.java

 // example program, and learn new CPTables.

 Streamer caseFile = new Streamer ("Data Files/ChestClinic.cas");

 net.reviseCPTsByCaseFile (caseFile, nodes, 1.0);

 net.write (new Streamer ("Data Files/Learned_ChestClinic.dne"));

 net.finalize();

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

}

 /*=======================================

 * This alternate way can replace the net.reviseCPTsByCaseFile

 * line above, if you need to filter or adjust individual cases.

 */

 long[] casePosn = new long[1];

 casePosn [0] = Net.FIRST_CASE;

 while (true) {

54 NETICA API JAVA VERSION 4.18

 net.retractFindings();

 net.readFindings (casePosn, caseFile, nodes, null, null);

 if (casePosn[0] == Net.NO_MORE_CASES) break;

 net.reviseCPTsByFindings (nodes, 1.0);

 casePosn[0] = Net.NEXT_CASE;

 }

6.6 EM and Gradient Descent Learning

As described in the “Algorithms” section above, counting learning should be done when possible, because

it is much faster and simpler, but in cases where there is a substantial amount of uncertain findings,

missing data or even variables for which there are no observations (!), EM or gradient descent learning

can do amazing things. If you are unfamiliar with the nature of these learning algorithms, you may first

want to experiment with them on your data a little using Netica Application, and read its onscreen help

about EM learning. The below method can be used to do any of Netica‟s learning algorithms.

First you create a Learner by calling

 Learner (int method, String info, Environ env);

passing for method the algorithm you wish to use (one of Learner.COUNTING_LEARNING,

Learner.EM_LEARNING, or Learner.GRADIENT_DESCENT_LEARNING).

If you are doing EM learning or gradient descent learning, then if you wish you can adjust the stopping

conditions with:

 void setMaxIterations (int maxIterations);

 void setMaxTolerance (double logLikelihoodTolerance);

Finally, you perform the learning with:

void learnCPTs(NodeList nodeList, Caseset caseset, double degree)by passing in the nodes whose CPTs

you wish to modify, the data as a Caseset (see the previous chapter for instructions on creating a

Caseset), and the degree, which is a multiplier for the frequency of the cases (e.g. degree = 3 means

act as if every case in the Caseset appeared 3 times).

When you are done with the Learner, you may reduce the resources required by calling:

 void finalize();

Here is a small code example: (for another, see “Connecting with a Database” in the previous chapter)

 Streamer netfile = new Streamer ("ParameterlessNet.dne");

JAVA VERSION 4.18 NETICA API 55

 Streamer datafile = new Streamer ("Data.cas");

 Net net = new Net (netfile, env, "no_visual");

 NodeList nodes = net.getNodes();

 Caseset cases = new Caseset();

 Learner learner = new Learner (Learner.EM_LEARNING);

 learner.setMaxTolerance (1e-5);

 cases.addCases (datafile, 1.0, null);

 learner.learnCPTs (nodes, cases, 1.0);

 learner.finalize();

 cases.finalize();

6.7 Fading

When a Bayes net is supposed to capture relationships between variables in a world which is constantly

changing, it is useful to treat more recent cases with a higher weight than older ones. An example might

be an adaptive Bayes net which is constantly receiving new cases and doing inferences while it slowly

changes to match a changing world.

Netica achieves this partial forgetting of the past by using fading. Every so often you call

Node.fadeCPTable(), passing it a degree between 0 and 1, and it will reduce the experience and

smooth the probabilities of the node by an amount dictated by the degree. A degree of 0 has no effect,

while a degree of 1 does complete forgetting, resulting in uniform distributions with no experience.

Calling fadeCPTable() once with degree = 1-a, and again with degree = 1-b, is equivalent to a

single call with degree = 1-ab.

During fading, each of the probabilities in the node's conditional probability table is modified as follows

(where prob and exper are the old values of probability and experience, and prob' and exper' are the new

values):

prob' = normalize (prob * exper * (1 - degree) + degree * BaseExper)

where BaseExper is normally 1 (see section 7.1). exper' is obtained as the normalization factor from

above (remember that there is one experience number per vector of probabilities). So:

prob' * exper' = prob * exper * (1 - degree) + degree * BaseExper

When learning in a changing environment, you would normally call fadeCPTable() every once in a

while so that what has been recently learned is more strongly weighted than what was learned long ago.

If an occurrence time for each case is known, and the cases are learned sequentially through time, then the

amount of fading to be done is: degree = 1 - r t where t is the amount of time since the last fading

56 NETICA API JAVA VERSION 4.18

was done, and r is a number less than, but close to, 1 and depends on the units of time and how quickly

the environment is changing. Different nodes may require different values of r. See the example in the

description of fadeCPTable() in the "Function Reference" chapter.

6.8 Performance Testing a Net using Real-World Data

After you have built a Bayes net, either by hand based on the judgments of an expert, or automatically by

learning it from data, you may want to test how effective it is. That can be done by using a set of cases

gathered from the real-world or from the environment in which the net will be used. You should use a

different data set than was used to build the Bayes net, otherwise your net may score too high, since it will

probably test slightly better on the training set than other sets. A common approach when learning a

Bayes net from data, is at the beginning to set aside a certain percentage of the (well shuffled) cases to be

used for later testing. These are known as the test cases (or “test data”), as opposed to the training cases

(or “training data”).

The first step is to identify the variables (i.e. nodes) that Netica won‟t know the value of during actual

usage of the net. For example, if the net is to be used as a classifier, then during usage Netica won‟t know

the value of the class variable. If the net is to be used for prediction, then Netica won‟t know the values

of the variables that are yet to occur in time. If the net is to be used for diagnosis, Netica won‟t know

what the actual faults or internal states are during the diagnosis. The variables (i.e. nodes) that will not be

known during usage are called the unobserved nodes.

The next step is to choose which of the unobserved nodes you want to test the Bayes net‟s ability on.

These are the nodes that statistics will be generated for, and are called the test nodes.

In the code, you first call new NetTester(), passing in a list of the test nodes. If there are some

unobserved nodes that aren‟t already in the test nodes, you pass in a list of them as the unobsv_nodes

argument (which can also include any of the test nodes if you want – it makes no difference since Netica

will take as the unobserved nodes the union of the two lists).

Then you call Tester.testWithCaseset(), passing in the case file containing the real-world data.

Netica will go through the case file, processing the cases one-by-one. Netica first reads in a case, except

for findings for the unobserved nodes. It then does belief updating to generate beliefs for each of the test

nodes, and checks those beliefs against the true value for those nodes as supplied by the case file (if they

are supplied for that case). It accumulates all the comparisons into summary statistics. If you want, you

can call testWithCaseset() several times with different files to generate statistics for the combined

data set.

JAVA VERSION 4.18 NETICA API 57

Finally, you call functions to retrieve the actual performance statistics you desire. You can obtain the

error rate with NetTester.getErrorRate(), the logarithmic loss with NetTester.getLogLoss(),

the quadratic loss with NetTester.getQuadraticLoss() and the whole confusion matrix with

NetTester.getConfusion(). Be sure to see the function documentation for each of these functions,

and NetTester() and NetTester.testWithCaseset(), for more details on the whole process.

Also, you can contact Norsys for a document with more information on what the various measures mean.

Here is some example program that rates the toy Bayes net “ChestClinic”, to test the “Cancer” node

diagnosis assuming that the other disease nodes (Tuberculosis, Bronchitis, TbOrCa) are also unobserved

nodes:

/*

 * TestNet.java

 *

 * Example use of Netica-J for testing the performance of

 * a learned net with the net-tester tool.

 */

import java.io.File;

import norsys.netica.*;

public class TestNet {

 public static void main (String[] args){

 try {

 Environ env = new Environ (null);

 Net net = new Net (new Streamer ("Data Files/ChestClinic.dne"));

 Node tuberculosis = net.getNode ("Tuberculosis");

 Node cancer = net.getNode ("Cancer");

 Node tbOrCa = net.getNode ("TbOrCa");

 Node bronchitis = net.getNode ("Bronchitis");

 // The observed nodes are typically the factors known during diagnosis:

 NodeList testNodes = new NodeList (net);

 testNodes.add (cancer);

 // The unobserved nodes are typically the factors not known during diagnosis:

 NodeList unobsvNodes = new NodeList (net);

 unobsvNodes.add (bronchitis);

 unobsvNodes.add (tuberculosis);

58 NETICA API JAVA VERSION 4.18

 unobsvNodes.add (tbOrCa);

 net.retractFindings(); // IMPORTANT: Otherwise any findings will be part of tests !!

 net.compile();

 NetTester tester = new NetTester (testNodes, unobsvNodes, -1);

 Streamer inStream = new Streamer ("Data Files/ChestClinic.cas");

 Caseset testCases = new Caseset();

 testCases.addCases (inStream, 1.0, null);

 tester.testWithCaseset (testCases);

 printConfusionMatrix (tester, cancer);

 System.out.println ("Error rate for " + cancer.getName() + " = " + tester.getErrorRate
(cancer));

 System.out.println ("Logarithmic loss for " + cancer.getName() + " = " + tester.getLogLoss
(cancer));

 // the following are not strictly necessary, but a good habit

 testCases.finalize();

 tester.finalize();

 net.finalize();

 }

 catch (Exception e){

 e.printStackTrace();

 }

}

 /*

 * Print a confusion matrix table

 */

 public static void printConfusionMatrix (NetTester nt, Node node) throws NeticaException {

 int numStates = node.getNumStates();

 System.out.println ("\nConfusion matrix for " + node.getName() + ":");

 for (int i = 0; i < numStates; ++i)

 System.out.print ("\t" + node.state(i).getName());

 System.out.println ("\tActual");

 for (int a = 0; a < numStates; ++a){

 for (int p = 0; p < numStates; ++p)

JAVA VERSION 4.18 NETICA API 59

 System.out.print ("\t" + (int) (nt.getConfusion (node, p, a)));

 System.out.println ("\t" + node.state(a).getName());

 }

 }

}

And this is the output it produces:

Confusion matrix for Cancer:

 present absent Actual

 9 2 present

 4 185 absent

Error rate for Cancer = 0.03

Logarithmic loss for Cancer = 0.08219048904200114

60 NETICA API JAVA VERSION 4.18

7 Modifying Nets

A common scenario is that you‟ve built a Bayes net using Netica Application (or Netica API, as described

in the “Building and Saving Nets” chapter) and saved the file. Now your program uses Netica API to

read the net file and use it to solve problems. Each of the problems is a little bit different, and it‟s not

enough to just enter different findings, you need to modify the net itself. Perhaps it‟s a small change like

altering the CPT tables, adding new states to a node, changing utilities or converting decision nodes to

nature nodes. Or maybe it is a major operation like taking several net fragments from different nets and

stitching them together to make a new net for the particular problem at hand. This chapter discusses some

ways to modify a net in place, and then in the section “Node Libraries” it discusses how to create

“libraries” of nodes or network fragments, and then stitch them together on the fly to create models.

Finally it discusses transforms that may be done on a Bayes net to remove nodes or reverse the direction

of links while maintaining the overall probabilistic relationship between the remaining nodes.

7.1 Common Modifications

Most of the functions introduced previously for building a Bayes net can also be used to modify it. For

instance, new Node() and Node.addLink() can introduce new variables or dependencies, and

Node.delete() and Node.deleteLink() can remove them.

Almost every property of nets and nodes can be altered. Even decision nodes can be converted to nature

nodes (Node.setKind()), or vice versa, without losing their CPT tables or other properties. That can

be useful to model situations with multiple agents, where the nodes that are the decisions of one agent, are

nature nodes to the other agents. First the optimal decisions are found for the first agent, and then those

decision nodes are converted to nature nodes when finding the optimal decisions for the next agent.

When adapting a net to a new environment, states can be added (Node.addStates()), removed

(Node.state().delete()), or the order of the states may be changed (Node.reorderStates()).

In each case the tables of the nodes being changed, and the tables of their children, will be appropriately

modified.

JAVA VERSION 4.18 NETICA API 61

The node tables themselves may be modified. Perhaps CPTs need to be changed based on frequency data

that is calculated externally. Or perhaps the utility tables of utility nodes are modified based on

preference information about a particular end-user, and then new optimal decisions found. The most

common change to CPT tables is to adjust them to take into account case data from the world, and that is

covered in detail in the “Learning From Case Data” chapter. Tables may be changed with:

Node.setCPTable(), Node.setStateFuncTable(), Node.setRealFuncTable(),

Node.equationToTable() and Node.deleteTables().

An advanced program may wish to lay out the visual positions of all the nodes, so that when the Bayes

net file is read by Netica Application, they will be displayed in the desired layout. Or perhaps choose in

which style to display each node (e.g. Belief Bars, Labeled Box or Hidden). The functions to use are:

Node.visual().setPosition() and Node.visual().setStyle().

7.1 Node Libraries

Often the probabilistic relation between a node and its parents represents a small piece of local knowledge

which may be applicable in a number of different nets to be used in different situations. That relation

may have been learned from data, or entered by an expert. Each new net it is placed in captures the

global relations between such local pieces of knowledge, and belief updating combines the local and

global knowledge with the details of some particular case.

For example, suppose that you made a simple net consisting of a node called Weather connected to a node

called Forecast. The link between them could go either way, since we can't really capture causation (they

are both caused by other variables, like the previous weather), but say you put the link from weather to

forecast because often it‟s better to put links from more immutable to less immutable variables. Each day

you revised its probabilities so that eventually it accurately captured the probabilistic relationship between

the morning weather forecast and the weather for that day. Then you could put it in a library to later graft

into nets for inference involving the weather and its forecast, such as the decision problem discussed in

the "Decision Nets" chapter.

x1 x2
x3

flow_rate instrument_status

temperature

Weather

Forecast Noisy_Or instrument

As another example, suppose you have a device for measuring the flow rate in a pipe. This sensor will

produce biased readings depending on the ambient temperature, and it can break in a few different ways,

each of them producing wrong or inaccurate readings. You can model the sensor with a 4 node net, 1

node for the reading on the sensor, and 3 parent nodes corresponding to: actual flow rate, ambient

62 NETICA API JAVA VERSION 4.18

temperature, and sensor status (okay, broken_1, broken_2, etc.). You enter the probabilistic relationship,

and then you disconnect the node from its parents and place it in a library (so it appears as in the above

diagram; disconnection and grafting are explained below). Later, if you have a net to model a situation in

which you have made two measurements with the device, you just duplicate the device characteristics

node from the library twice into the new net, and graft it to the appropriate nodes in that net (see diagram

below). Note that if the ambient temperature could be different between the two measurements, then the

room_temp node would appear as two connected nodes, similar to the flow nodes, and the same goes for

the instrument_status node if the device may have broken between measurements. Automating the

process of net construction for new situations is an area of active research, with dynamic Bayes nets,

templates and graph grammars being some of the methods used.

instrument1 instrument2

flow1 flow2

room_tempinstrument_status

Netica makes it easy to maintain libraries of disconnected nodes and subnets. To make a new library, just

use new Net(). Nodes and subnets can be copied to it using Net.copyNodes(), which can transfer

material from one net to another, and also copies all the links between nodes in a subnet. When a node is

being duplicated, but one of its parents isn't, then Net.copyNodes() will give the duplicated node a

disconnected link where that parent was. This is a link which only has a place-holder for a parent, and is

meant to be reconnected to another node before being used for inference. In this way the conditional

probability relationship that the node had with its parents is not lost. The disconnected link is given the

name of the parent it once had if the link is not already named. If you ever want to check whether a link

is disconnected, use Node.getKind().

When you want to use something in the library, you call Net.copyNodes() again, this time to duplicate

from the library into the new net. Then you connect up any disconnected links with

Node.switchParent(), which will switch out the parent place-holder, and switch in the new parent.

Below is a code example for the flow measuring instrument described earlier:

Net net = new Net();

Node flow = new Node ("flow_rate", 0, net);

Node temp = new Node ("temperature", 0, net);

Node broken = new Node ("instrument_status", 5, net);

Node instrument = new Node ("instrument", 0, net);

JAVA VERSION 4.18 NETICA API 63

instrument.addLink (flow);

instrument.addLink (temp);

instrument.addLink (broken);

// ...

// … Put here: Build probabilistic relation for node 'instrument',

// … either by learning from cases, or entry by an expert.

// ...

// The below will put a copy of the 'instrument' node,

// disconnected from its parents, into the library.

// Its disconnected link names will be those of the old parents.

Net libnet = new Net();

duplicate (instrument, libnet); // see definition below

libnet.write (new Streamer ("Library.dnet"));

net.finalize();

libnet.finalize();

// This is a static variant of NodeEx.duplicate(), used above

public static Node duplicate (Node oldNode, Net newNet) throws NeticaException {

 NodeList nodes = new NodeList (oldNode.getNet());

 nodes.add (oldNode);

 NodeList newNodes = newNet.copyNodes (nodes);

 return newNodes.getNode (0);

 }

Now the library is constructed and saved to file, with instrument as the only node in it.

At a later session, we use the library to construct appnet, an application net in which the instrument is

used to measure flow1 and flow2, which are in the same room at the same temperature:

Net appnet = new Net();

Node flow1 = new Node ("flow1", 0, appnet);

Node flow2 = new Node ("flow2", 0, appnet);

Node rtemp = new Node ("room_temp", 0, appnet);

Node status = new Node ("instrument_status", 0, appnet);

// ...

64 NETICA API JAVA VERSION 4.18

// … Put here: Build rest of application net.

// … Connect up nodes flow1, flow2, rtemp, and status.

// … Add probabilistic relations for flow1, flow2, rtemp, and status.

// ...

// The below will get 2 copies of the instrument node from the library,

// and put them in the application net.

libnet = new Net (new Streamer ("Library.dnet"));

Node instrument1 = duplicate (libnet.getNode ("instrument"), appnet);

Node instrument2 = duplicate (libnet.getNode ("instrument"), appnet);

// The below will graft them to the other nodes in the application net.

instrument1.switchParent (instrument1.getInputIndex ("flow_rate"), flow1);

instrument1.switchParent (instrument1.getInputIndex ("temperature"), rtemp);

instrument1.switchParent (instrument1.getInputIndex ("instrument_status"), status);

instrument2.switchParent (instrument2.getInputIndex ("flow_rate"), flow2);

instrument2.switchParent (instrument2.getInputIndex ("temperature"), rtemp);

instrument2.switchParent (instrument2.getInputIndex ("instrument_status"), status);

Now the application net appnet is ready for probabilistic inference. Perhaps we have positive findings for

the instrument node (i.e. what we read from its dial), and we use them to determine flows and their

uncertainties in a way that properly accounts for random (uncorrelated) and systematic (correlated) errors,

as well as all the background knowledge about the situation.

7.2 Net Reduction

Suppose you have a large net that has been constructed over time by a combination of expert assistance

and probability learning. It shows the relationships between hundreds of variables, and contains much

valuable information that could be used in a number of different applications.

Now you want to use it in an application where only 10 of the variables are of interest to you. In every

query of the new application, four of them will always have the same value. For instance, one of the

nodes in the original net might by Gender, and in the restricted application the net will only be used for

females, so we would like to enter a permanent finding of 'female' for the node Gender. These nodes are

called context nodes. In each of the queries, you will be receiving new findings for 4 other nodes, and

then you want the resulting beliefs of the remaining 2. The nodes that will have new findings are called

findings nodes, and those whose beliefs you will want are called target nodes. The hundreds of other

JAVA VERSION 4.18 NETICA API 65

nodes in the net might be involved in intermediate calculations, but you don't care about their values

explicitly.

You can simplify the large net down to one with just 6 nodes using Net.absorbNodes(). First enter

the permanent findings for the context nodes. Then make a list of all the nodes except the findings nodes

and the target nodes, and pass it to Net.absorbNodes(). The resulting 6 node net will give the same

inference results as the original large one, for the restricted queries you will be making. If you are

guaranteed that there will always be findings for every findings node, then you can then further simplify

things by removing any links that go from findings node P to findings node C, providing C does not have

a target node as an ancestor. This means that if you use Node.reverseLink() to make all the findings

nodes ancestors of all the target nodes, then you can remove all the links between the findings nodes.

Any findings node that is left completely disconnected by this operation is irrelevant to the query. And

now you can examine the conditional probability relations of the target nodes to see directly how they

depend on the findings. You may just be able to look up the desired probabilities without doing belief

updating at all!

There is a danger to keep in mind. Even though the reduced net has fewer nodes than the original, it may

actually be more complex, if many links were added by Net.absorbNodes() or

Node.reverseLink() (remember that the size of a node's conditional probability table can be

exponential in its number of parents). Generally speaking, absorbing out context nodes (i.e. nodes with

findings entered) which have many ancestor nodes results in the worst increase in complexity. The next

worst is absorbing out non-context nodes (i.e. nodes with no findings) which have many descendant

nodes. Absorbing out context nodes with no ancestors, or non-context nodes with no descendants, will

not add any links. Of course, if the number of target and findings nodes is very small, the resulting net

must be simpler, although the transformations to generate it might temporarily require a lot of memory.

7.3 Probabilistic Inference by Node Absorption

From the previous section you may have realized it is possible to do probabilistic inference using node

absorption, by entering all the findings, and then absorbing all the nodes except for a single target node.

The resulting probability distribution for that node can be obtained with Node.getCPTable(), and it

will be a single belief vector (because the node won't have any parents), that is the same as the belief

vector that would be obtained by compiling the Bayes net, and obtaining the beliefs via belief updating

with Node.getBeliefs().

The question is: which method is faster? If you need the beliefs for all the nodes, then you would have to

repeat the absorbing-node method for each of the nodes (duplicating the net each time, since it is

destroyed in the process), and so it will usually be far slower. But if you only need the beliefs of one

node, for one set of findings, and there are many nodes in the net that are irrelevant to the particular

66 NETICA API JAVA VERSION 4.18

query, then the node absorption method can be much faster (providing a good “elimination order” for

absorbing the nodes is used).

It should be mentioned that node absorption will also work with decision nets (see the "Decision Nets"

chapter) to find optimal decisions. When a decision node is absorbed it is not removed from the net;

instead it is completely disconnected and its decision table set to the optimal decision function.

When using Net.absorbNodes() for decision nets, the decision nodes must have no-forgetting links,

and if the list of nodes to absorb does not include all the nodes in the net, it must consist of a descendant

subnet (see Shachter86, Shachter88 and Shachter89 for definitions and details of the algorithm used). If

there are missing no-forgetting links or missing descendants in the list of nodes to absorb, then

Net.absorbNodes() will absorb as many nodes as possible, then generate an error explaining exactly

why it was impossible to proceed.

JAVA VERSION 4.18 NETICA API 67

8 Decision Nets

Chapter 3 was about probabilistic inference using a Bayes net, where the purpose was to determine new

beliefs (in the form of probabilities) as observations were made or facts gathered. A Bayes net is

composed only of nature nodes (which may be “chance” nodes or “deterministic” nodes). By adding

decision nodes and utility nodes (also known as “value” nodes) to a Bayes net, we obtain a decision net

(also known as an “influence diagram”). Decision nets can be used to find the optimal decisions which

will maximize expected utility.

First, we give a small warning. You may find it overly challenging if your first usage of Netica API is to

build a large decision net with multiple decisions, and you haven‟t had related experience. People usually

start by building Bayes nets, then nets with just one decision, and after they have some experience, nets

with a few decisions. Also, they usually have some experience working with nets using Netica

Application, or a similar program, before using Netica API for complex decision nets.

As an example decision net, let's consider a very tiny one from Ross Shachter known as "Umbrella". It

has 2 nature nodes representing the weather Forecast in the morning (sunny, cloudy or rainy), and what

the Weather actually turns out to be during the day (sunshine or rain), a decision node of whether or not to

take an Umbrella, and a utility node that measures our level of Satisfaction. There is a link from Weather

to Forecast capturing the believed correlation between the two (perhaps based on previous observations).

Forecast Weather

Umbrella Satisfaction

There is a link from Forecast to Umbrella indicating that we will know the forecast when we make the

decision. It is always the case that links entering a decision node indicate what variables will be known at

the time of the decision. What we wish to find in solving the decision problem is a function providing the

68 NETICA API JAVA VERSION 4.18

value of the decision node for each possible setting of its parent nodes, which maximizes the expected

value of the utility nodes. In other words, we find a contingent plan that tells which decision to make for

each possible set of observations that will be made when it is time to act on the decision. There is no link

from Weather to Umbrella; if we knew for certain what the weather was going to be, it would be easy to

decide whether or not to take the umbrella.

There are links from Weather and Umbrella to Satisfaction, capturing the idea that I am most happy when

it is sunny and I don't take my umbrella (utility = 100), next most when it is raining and I take my

umbrella (utility = 70). I hate carrying my umbrella on a sunny day (utility = 20), but am most unhappy if

it is raining and I don't have one (utility = 0).

8.1 Programming Example

Below is a listing of the program, MakeDecision.java, which build this decision net in memory, and then

solves it (i.e., finds the optimal decisions). This program can be found in the examples/ directory of your

Netica-C distribution. Much of it is very similar to building a Bayes net (see the chapter "Building and

Saving Nets" for explanations of those parts). We will discuss the things new to this example.

When a node is first created with new Node(), it starts off as a nature node. Here we change Umbrella

into a decision node, and Satisfaction into a utility node using Node.setKind(). Node() is passed the

number of states of the node, and in this example, as well as having 2-state nodes, there is also a 3-state

node, and a continuous node (indicated by passing 0 for number of states). Utility nodes are always

continuous deterministic nodes. We use Node.setRealFuncTable() to build up the relations of a

deterministic node instead of Node.setCPTable(), but it works in a similar fashion.

/*

 * MakeDecision.java

 *

 * Example use of Netica-J to build a decision net and choose an optimal decision with it.

 */

import norsys.netica.*;

import norsys.neticaEx.aliases.Node;

public class MakeDecision {

 public static void main (String[] args){

 try {

 Node.setConstructorClass ("norsys.neticaEx.aliases.Node");

 Environ env = new Environ (null);

 Net net = new Net();

JAVA VERSION 4.18 NETICA API 69

 Node weather = new Node ("Weather", "sunshine,rain", net);

 Node forecast = new Node ("Forecast", "sunny,cloudy,rainy", net);

 Node umbrella = new Node ("Umbrella" "take_umbrella, dont_take_umbrella", net);

 Node satisfaction = new Node ("Satisfaction", 0, net); // 0 for continuous node

 umbrella.setKind (Node.DECISION_NODE);

 satisfaction.setKind (Node.UTILITY_NODE);

 forecast.addLink (weather);

 umbrella.addLink (forecast);

 satisfaction.addLink (weather);

 satisfaction.addLink (umbrella);

 weather.setCPTable (0.7, 0.3);

 // forecast

 // weather | sunny cloudy rainy

 forecast.setCPTable ("sunshine", 0.7, 0.2, 0.1);

 forecast.setCPTable ("rain", 0.15, 0.25, 0.6);

 // weather umbrella utility

 satisfaction.setRealFuncTable ("sunshine, take_umbrella", 20.0);

 satisfaction.setRealFuncTable ("sunshine, dont_take_umbrella", 100.0);

 satisfaction.setRealFuncTable ("rain, take_umbrella", 70.0);

 satisfaction.setRealFuncTable ("rain, dont_take_umbrella", 0.0);

 net.compile();

 //----- 1st type of usage: To get the expected utilities, given the current findings

 forecast.finding().enterState ("sunny");

 float[] utils = umbrella.getExpectedUtils(); // returns expected utilities, given current findings

 System.out.print ("If the forecast is sunny, ");

 System.out.println ("the expected utility of " + umbrella.state(0) + " is " + utils[0] +

 ", of " + umbrella.state(1) + " is " + utils[1]);

 net.retractFindings();

 forecast.finding().enterState ("cloudy");

 utils = umbrella.getExpectedUtils();

70 NETICA API JAVA VERSION 4.18

 System.out.print ("If the forecast is cloudy, ");

 System.out.println ("the expected utility of " + umbrella.state(0) + " is " + utils[0] +

 ", of " + umbrella.state(1) + " is " + utils[1] + "\n");

 //----- 2nd type of usage: To get the optimal decision table

 net.retractFindings();

 umbrella.getExpectedUtils(); // causes Netica to recompute decision tables,

 // given current findings (which in this case are no findings)

 for (int fs = 0; fs < forecast.getNumStates(); ++fs){

 int[] parStates = new int[1];

 parStates[0] = fs; // forecast is the parent of umbrella

 int decision = umbrella.getStateFuncTable (parStates, null) [0];

 System.out.println ("If the forecast is " + forecast.state (fs) +

 ",\tthe best decision is " + umbrella.state (decision));

 }

 net.finalize(); // free resources immediately and safely; not necessary, but a good habit

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Once the net is built, the program calls Net.compile(), and then Node.getExpectedUtils() to

force a belief updating, which will build a new deterministic table for each decision node. Each

deterministic table represents a function which provides a value for the node for each possible

configuration of parent values. Since the links into a decision node indicate what the decision maker will

know when he is about to make the decision, this function provides a decision for each possible

information state. The decision functions Netica finds are the ones that provide the highest expected

value of the utility node (or the sum of the utility nodes if there are more than one). The above program

uses Node.getStateFuncTable() to access this decision function, and prints out the following:

If the forecast is sunny, the expected utility of take_umbrella is 24.205606,

of dont_take_umbrella is 91.58878

If the forecast is cloudy, the expected utility of take_umbrella is 37.44186,

of dont_take_umbrella is 65.11628

If the forecast is sunny, the best decision is dont_take_umbrella

If the forecast is cloudy, the best decision is dont_take_umbrella

If the forecast is rainy, the best decision is take_umbrella

JAVA VERSION 4.18 NETICA API 71

Note that Node.getExpectedUtils() or Node.getBeliefs() must be called before

Node.getStateFuncTable() to have Netica build the decision table (and again after entering findings

if you want it optimized for the new findings).

For more information on decision nets in general, and using Netica to work with them, see the onscreen

help system of Netica Application (and there is also some information in the tutorial at the Norsys

website).

72 NETICA API JAVA VERSION 4.18

9 Drawing Nodes and Nets

Netica-J includes several Java-SWING components for displaying Netica nets and nodes. The color,

layout, and general appearance of the displayed components are very similar to the style used in the

Netica Application program (see http://www.norsys.com/netica.html for details, to purchase, or to

download a size-restricted free version.)

With the exception of norsys.netica.VisualNode, all of the classes relevant to graphical display can be

found in the norsys.netica.gui package. The two most important classes in this package are NodePanel

and NetPanel. Each of these is a javax.swing.JPanel that displays assorted graphical components (e.g.,

JLabels) within itself. You typically have full access to these subcomponents, and so can change colors,

fonts, and borders, attach event listeners, set visibility, etc., just as you would with any AWT/SWING

component.

The philosophy behind the development of the gui package is to enable you to very easily and rapidly add

graphical displays to your Netica-J programs. For instance, the following tiny program is all that is

needed to display a net:

import norsys.netica.*;

import norsys.netica.gui.*;

import javax.swing.*;

class DrawNet extends JFrame {

 public DrawNet (String netName) throws Exception {

 Net net = new Net (new Streamer (netName));

 net.compile(); // optional

 NetPanel netPanel = new NetPanel (net, NodePanel.NODE_STYLE_AUTO_SELECT);

 getContentPane().add (new JScrollPane (netPanel)); // adds the NetPanel to ourself

 setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 setSize (800, 500); // or supply getPreferredSize();

http://www.norsys.com/netica.html

JAVA VERSION 4.18 NETICA API 73

 show();

 }

 public static void main (String[] args){

 try {

 Environ env = new Environ (null);

 DrawNet dn = new DrawNet (args[0]);

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

}

You call the program with: java DrawNet SomeNet.dne (or .neta) and it will draw the net in a

fashion similar to the way that Netica Application does, with the nature nodes drawn using the popular

“belief-bar” style. If you‟d prefer a different style, then simply replace

NodePanel.NODE_STYLE_AUTO_SELECT in the NetPanel constructor call with the style of your

choice. Here is the window that the command

 java DrawNet "Data Files/ChestClinic_WithVisuals.dne" creates:

74 NETICA API JAVA VERSION 4.18

9.1 Netica Net Visual Properties and the gui Package

Netica files (.dne and .neta files) may optionally contain visual information as to the size, position, and

visual style of the nodes they contain. This visual information is used both by the Netica Application and

the Netica-J gui package in order to help decide where and how to display the net components. The

general policy of a Netica graphical application is to attempt to make sense of and employ the visual

information that is present, but if it is not able to do so, it will ignore that information.

9.2 Node Position

If a Netica file has been saved without visual information, then all of the Nodes are by default given a

position of (0,0). To add position information, you may use the Netica Application to display the net and

then position the Nodes as desired, or from within the Java API you may use Node.visual().setPosition().

Once a NodePanel has been created, it is a Java component that can be moved anywhere (e.g., using

java.awt.Component.setLocation()) without affecting the Node.visual() position data. If you want to keep

the displayed position in sync with the Netica visual() position, you must either manage this yourself, or

else confine yourself to moving the component by calling NodePanel.moveBy().

9.3 Node Style

If a Node does not contain any style information (introduced using Netica Application or by calling

Node.visual().setStyle(), then Netica-J will apply certain default styles when creating NodePanels

(NodePanel.createNodePanel()) for that node. Conversely, if the node does contain style information,

that information will be treated as the preferred style when Netica-J is given an option in deciding what

variety of NodePanel to create.

JAVA VERSION 4.18 NETICA API 75

9.4 Drawing Nodes

You do not require the NetPanel class to draw nodes. You may draw the nodes directly using any of

several NodePanels that are supplied:

The NodePanel class itself is an abstract base class that manages a number of common functions of all

NodePanels, such as hooking up to the Netica Node that is represented and discovering it‟s title (or name,

if it lacks a title), managing event listeners, and managing display modes (hi-lighted, normal, or grayed).

9.5 Event Handling

Besides being standard JComponents and hence being able to partake of all the standard Java

AWT/SWING events, NetPanel and NodePanel objects are also

norsys.netica.gui.RecursingEventListeners. The RecursingEventListener interface provides two very

convenient methods: addListenerToAllComponents (java.util.EventListener eventListener) and

removeListenerFromAllComponents (java.util.EventListener eventListener). These will recursively

run through all the subcomponents of the NetPanel or NodePanel and attach the EventListener to those

subcomponents. Thus, with a single command, you can add an event listener to all the components

within a NetPanel.

9.6 NetViewer

Included in the examples/ directory of this distribution is a reasonably sophisticated program,

NetViewer.java. This program allows you to select a net from a list, whereupon it draws the selected net,

and then allows you to edit the net and to enter finding information as well. It illustrates how to attach

mouse events to nodes, to parts of nodes (e.g., the belief-bars rows), and even to links. If you need to

build a more sophisticated graphical application for selecting nodes, entering findings, and such, you may

wish to use this program as a starting point.

76 NETICA API JAVA VERSION 4.18

9.7 Miscellaneous Useful Features

The NetPanel class supports the concept of a selection set, which is just a NodeList of nodes in the

“hilited state” (see NodePanel.getDisplayMode). Also, you may choose to display a subset of the nodes

in a net using the setSubnet method.

9.8 Feedback Wanted

We would appreciate hearing whether you find the gui package useful and how you might like to see it

evolve.

JAVA VERSION 4.18 NETICA API 77

10 Special Topics

10.1 Node Lists and Node-sets

Many operations in intelligent computing require working with lists of variables, and when using Bayes

nets that means working with lists of nodes, so it is not surprising that many Netica functions take node

lists as arguments. At first it might not be clear why Netica has two classes to work with sets of nodes,

but their purposes are very different. Netica‟s workhorse node list class is NodeList, whose main

purpose is to pass an ordered list of nodes to Netica-J, or retrieve such a list from Netica-J. It extends

java.util.Vector, but requires that all of its elements be Nodes, and that they all come from the same Net.

The other class is Nodeset, which is just meant to access node-sets defined in Netica Application.

Netica Application has a convenient way of using the GUI to define sets of nodes, give them a color, and

do operations on a whole set at once. It displays each node with the color of its node-set (since a node

may be a member of several node-sets, they have a priority order for determining color), and all the node-

set information is saved in the file with the net. Since Netica-J works with the net files, node-sets provide

a convenient way to pass sets of nodes back and forth between Netica Application and Netica-J.

Depending on their name, some of the sets have special meaning to Netica; others have meaning only to

the developer.

NodeLists have the following constructor, copy constructor, access function and finalizer:

NodeList.NodeList (Net parentNet)

Constructs an empty NodeList (initial capacity is 100).

NodeList (NodeList nodeList)

Copy constructs a new NodeList from an existing NodeList. The list is duplicated, but not the nodes themselves.

Node NodeList.getNode (int index)

Returns the Nth node of a list (the first node is numbered 0).

void NodeList.finalize ()

Frees the memory used by a list of nodes. Not necessary to call, since Java will do it automatically.

78 NETICA API JAVA VERSION 4.18

As well they inherit the usual functions from java‟s Vector:

void NodeList.add (int index, Node element)

Node NodeList.remove(int index)

Node NodeList.set (int index, Node element)

int NodeList.indexOf (Node elem, int index)

int NodeList.size ()

void NodeList.clear ()

Here are some of the most basic functions using NodeLists:

NodeList Net.getNodes ()

Returns a list of all the nodes in the net

NodeList Node.getParents ()

Returns a list of the parents of a node

NodeList Node.getChildren ()

Returns a list of the children of a node

void Node.getRelatedNodes (NodeList relatedNodes, String relation)

Finds all the nodes that bear a given relationship (such as D-connected, Markov blanket, ancestors, children, etc.)

with a given node.

void Net.getRelatedNodes (NodeList relatedNodes, String relation, NodeList nodeList)

Finds the nodes that bear a given relationship with a given set of nodes.

Static int NodeList.mapStateList (int[] srcStates, NodeList srcNodes, NodeList destNodes)

Returns an array of the same states as srcStates (which is in same order as srcNodes), but in the order of destNodes.

And here are all the Nodeset functions:

void Node.addToNodeset (String nodeset)

Adds this node to the node-set of the given name

void Node.removeFromNodeset (String nodeset)

Removes this node from the node-set of the given name

boolean Node.isInNodeset (String nodeset)

Returns whether this node is a member of the given node-set

String Net.getAllNodesets (boolean includeSystem)

Returns a list of all node-sets defined for this net, separated by commas, in priority order. The argument indicates

whether to include Netica‟s built-in nodes-sets, otherwise it only puts user defined ones.

JAVA VERSION 4.18 NETICA API 79

void Net.reorderNodesets (String nodesetOrder)

Re-orders the priority of the node-sets as requested (priority is used to choose display color). Any node-sets

contained in the comma-separated string nodesetOrder will become the highest priority, with the nodes earlier in that

list being higher priority. The priority of nodes not mentioned in nodesetOrder will not be modified.

java.awt.Color Net.getNodesetColor (String nodeset)

void Net.setNodesetColor (String nodeset, java.awt.Color color)

10.2 Graph Algorithms

The nodes and links of a Bayes net form a “graph”, as defined in graph theory. Graph theory provides

algorithms to efficiently find all the descendents of a node, or all its ancestors, connected nodes, Markov

blanket, etc. Netica very efficiently implements these algorithms, and makes them available with the

Node method:

 void getRelatedNodes (NodeList relatedNodes, String relation);

To use it, you pass the relation you desire as a string, and a node list to be filled. Then the function puts

all of the related nodes into the list. For example, to find the Markov blanket of node_A, you could use:

 NodeList mb = new NodeList (net);

 node_A.getRelatedNodes (mb, "markov_blanket");

After execution, the list mb will contain all the nodes in the Markov blanket of node_A.

The allowed relation strings are: "parents", "children", "ancestors", "descendents",

"connected", "markov_blanket", and "d_connected" (the singular version of each of these

words is also acceptable, and does the same thing). You can add certain modifiers (in any order) to the

string containing the relation. The allowed modifiers are:

"append" means to add to the list that is passed in (otherwise that list is first emptied).

"union" means to add to the list that is passed in and remove all duplicates.

"intersection" means to reduce the passed-in list to only the nodes that are in both the original

passed-in list and the relation.

"subtract" means to take the nodes that are in the relation away from the passed-in list.

"exclude_self" is only relevant for: "ancestors", "descendents", "connected", and

"d_connected". Without it the relation list will also include the original node (generation 0).

"include_evidence_nodes" is only relevant for "markov_blanket" and "d_connected".

Without it the relation list will not contain any nodes with findings.

For example, to create a list of all the nodes that are both ancestors of node_A, and descendents of

node_B, you could use:

80 NETICA API JAVA VERSION 4.18

 NodeList ad = new NodeList (net);

 node_A.getRelatedNodes (ad, "ancestors");

 node_B.getRelatedNodes (ad, "intersection, descendents");

If you want to find all the nodes that are related to a whole group of nodes, you use

Net.getRelatedNodes(). It works the same as Node.getRelatedNodes(), except that it takes a

list of nodes as an extra parameter:

 void getRelatedNodes (NodeList relatedNodes, String relation, NodeList ofNodes);

Sometimes you don‟t need a list of all the nodes bearing some relation to a certain node, you just want to

know if that relation holds between two nodes. For example, you may want to know if node A is an

ancestor of node B. You could use the function described above to generate the whole list of ancestors of

B, and then check if A is a member, but that would be wasteful. Instead, you call Node.isRelated(),

like this:

 if (node_A.isRelated ("ancestor", node_B)) ...

10.3 User-defined Data

Sometimes it is very useful to be able to attach your own data to Netica objects. Netica doesn‟t do

anything with that data; it just holds the data until you ask for it back. The Netica objects that you can

attach data to are: nets (Net) and nodes (Node).

There are two different ways of attaching data. One is to attach to the Netica object a single Java object.

That object can be whatever you wish, perhaps a large collection. When the Netica object is duplicated or

saved to file, the reference you have attached will be ignored. Only one such arbitrary Java object can be

attached to each Netica object. The relevant methods for attaching and retrieving data in this way are:

Node/Net/Environ.user().setReference()and

Node/Net/Environ.user().getReference():

 void setReference (Object obj);

 Object getReference ();

The other way of attaching data to Netica objects is by “user fields”, with which you can attach as many

data items as you wish to an object, each under its own name (i.e., “attribute-value”). Your data will be

duplicated if the node is duplicated, and when you save your net to file, Netica will include your data in

the file. Representative prototypes are:

 void setNumber (String fieldName, double fieldValue);

 void setString (String fieldName, String fieldValue);

 void setObject (String fieldName, java.io.Serializable fieldValue);

 void setBytes (String fieldName, byte[] bytes);

JAVA VERSION 4.18 NETICA API 81

 void removeField (String fieldName);

 double getNumber (String fieldName);

 String getString (String fieldName);

 Object getObject (String fieldName);

 byte[] getBytes (String fieldName);

 String getNthFieldName (int index);

To set a user field you pass a name for the field and a reference to your data. When you later call the

method to recover your data, you pass in the name you gave it, and Netica will return you a newly

constructed object identical to the original (except for its hashcode).

For example:

 myNode.user().setString (“author”, “Sarah”);

 …

 String author = myNode.user().getString(“author”);

User fields can be very conveniently viewed or modified using Netica Application, which provides a good

way of transferring information between an end-user and your Netica-J program (as are node-sets).

If you wish to find all the user fields defined for some node or net, you can iterate through them with

User.getNthFieldName().

10.4 Sensitivity

Of significant importance in Bayes net work is a measure of the independence between various nodes of

the net. Using just the link structure and d-separation rules, you can determine which nodes are

completely independent of which other ones (see the “Graph Algorithms” section above), and how that

changes as findings arrive. However, dependence is a matter of degree, and using Netica‟s sensitivity

functions, you can efficiently determine how much an as yet unknown finding at one node will likely

change the beliefs at another node.

There are many varied uses for the sensitivity measure. During diagnosis, it can specify which nodes will

be the most informative in crystallizing the beliefs of the most probable fault nodes. As findings arrive it

will adjust to account for the new findings, always identifying where further information would be useful

to complete the diagnosis, in a most intelligent manner. In a net built for classification, you can

determine which features are the most valuable for performing the classification (i.e. “feature selection”).

In an information gathering environment, you can identify which are the most important questions to ask

at each point (to provide information on the variables of interest), based on the answers to questions

already received, so as to avoid asking unnecessary or irrelevant questions. When building a model of the

82 NETICA API JAVA VERSION 4.18

world, such as an environmental model, you can determine which parts of the model most affect the

variables of interest; thereby identifying which parts should be made the most carefully and accurately.

Say you are interested in the beliefs of a particular node, which we call the target node. Then there are a

set of other nodes (called the varying nodes), for which it may be possible to have findings, and you want

to know how much those findings are likely to influence the beliefs of the target node.

To use Netica‟s sensitivity functions, you first create a Sensitivity object using the constructor:

 Sensitivity (Node targetNode, NodeList varyingNodes, int whatFind);

You pass it the target node targetNode, and a list of the varying nodes varyingNodes. You will be

able to use the Sensitivity object returned to find the sensitivity of targetNode to each of the nodes

in varyingNodes. You also pass whatFind to indicate what type of sensitivity calculations you wish it

to be able to perform, which should be VARIANCE_OF_REAL_SENSV if you wish to be able to call

getVarianceOfReal, ENTROPY_SENSV if you wish to be able to call getMutualInfo, or their bitwise-or

to be able to use both. Finally, you obtain the actual sensitivity numbers by calling one of these methods

on the Sensitivity object:

 double getMutualInfo (Node varyingNode);

 double getVarianceOfReal (Node varyingNode);

If the target node is discrete with no real number levels associated with the states, then the mutual

information is the only function that can be used. If the target node is a discretized continuous node, or a

discrete node with a real number associated with each state, then the variance-of-real measure is the

recommended measure, although you may wish to use mutual information in some situations. The mutual

information is the reduction in entropy of the target node belief distribution, due to a finding at the

varying node (over each possible finding, weighted by the probability of obtaining that finding).

When you call one of the two functions, it will return the sensitivity of the original targetNode (used in

the construction of the Sensitivity) with respect to the varyingNode passed in. The first time it is

called, it takes longer to return, since it is calculating the results for all the varyingNodes that were used

in the construction of the Sensitivity (because it can save time doing them all at once), but it

remembers the results so subsequent calls are very fast (unless a finding or something else in the net

changes, in which case it must re-calculate).

Mutual information is symmetric (i.e., it has the same value when the target node and varying node are

reversed), so you can use getMutualInfo() to efficiently determine how much obtaining a finding at

one node will likely effect the beliefs of all the rest of the nodes in the net.

When you are finished using a Sensitivity object, you can safely free its resources using

finalize(), or you can leave that to the JVM.

JAVA VERSION 4.18 NETICA API 83

Currently Netica‟s sensitivity analysis works only on Bayes nets, and not decision nets. You can also use

Netica Application to do sensitivity analysis by choosing Network → Sensitivity to Findings from the

menu. For more information on Netica‟s calculation of sensitivity, contact support@norsys.com, and ask

for the “Sensitivity” document.

10.5 Stochastic Simulation

Netica can be used to generate random cases (aka “synthetic data”), which are cases whose values follow

the distribution represented by the Bayes net, including any findings that it has.

This synthetic data may be browsed by people to get a feel for the type of cases to expect, or used to test

people on their predictive or diagnostic ability. It can be used to learn other Bayes nets, or other machine

learning representations, such as neural nets, decision trees or decision rules.

Perhaps its most valuable use is when the Bayes net is a physical model of a real-world situation, and the

synthetic data provides stochastic simulations. The output of those simulations can then be analyzed by

other programs. For example, the Bayes net may model a warehouse and distribution scheme, which can

be tested under various conditions to check its performance. In a similar vein the Bayes net may model a

control system, economic system, political environment, computer network, etc.

To generate a synthetic case, the method of Net to use is:

 int Net.generateRandomCase (NodeList nodeList, int method, double timeout);

where the method argument determines which algorithm Netica uses (for example, forward sampling

with rejection or by junction tree). For an example of a small program using it, see the

SimulateCases.java example program in the “Findings and Cases” chapter.

mailto:support@norsys.com

84 NETICA API JAVA VERSION 4.18

11 Equations

The relation between a node and its parent nodes can be defined using an equation if desired. This

eliminates the burden of building conditional probability tables (CPTs) manually. It is possible to use an

equation for continuous or discrete nodes, and for probabilistic or deterministic relations.

Equations are a kind of “short-hand” form of expressing a CPT. Since Netica‟s Bayesian inference

usually requires that CPTs be available, equations must be converted to tables (by calling

Node.equationToTable()) before compiling a net, or doing certain net transforms like absorbing

nodes or reversing links. Netica then uses the tables in the same way as if they had been entered directly.

Sometimes Netica uses an equation directly, without the need for a table. If findings are entered for all

the parents of a node, and that node has a deterministic equation, then the node is given the exact value

computed from the equation (which can then propagate to its children) during a deterministic propagation

phase that is the first step of belief updating (see Node.calcValue() and Node.CalcState()).

Having this phase increases both accuracy and speed, and can be useful for “preprocessing” input data.

Another time Netica uses an equation directly is during stochastic simulation (calling

Node.generateRandomCase() with method=FORWARD_SAMPLING).

11.1 Simple Examples

Here are some examples of using equations in Netica:

Suppose X is a continuous variable representing the position of a moving object, and is dependent on its

parent nodes: Velocity, Time, and Start position. This equation could compactly express their

relationship:

X (Velocity, Time, Start) = Start + Velocity * Time

Now suppose that the start position is zero, but that there is some uncertainty about the end position,

given by the normal distribution with standard deviation S:

JAVA VERSION 4.18 NETICA API 85

p (X | Velocity, Time, S) = NormalDist (X, Velocity * Time, S)

Here is an example of a discrete node Color with states red, blue and green. As a parent, it has the

discrete node Taste with states sour, salty and sweet. The below is a deterministic equation giving Color

as a function of Taste, which demonstrates the use of the conditional operator ?:

Color (Taste) =

 Taste==sour? blue: Taste==sweet? red:

 Taste==salty? green: gray

Finally, consider a discrete node Color, which is indicator taking on the values red or blue depending on

whether the parent node Taste is sweet or not, but that works imperfectly:

p (Color | Taste) =

 (Taste==sweet) ? (Color==red ? 0.9 : 0.1): 0.5

For more examples, see the “Specialized Examples” section below.

11.2 Equation Syntax

Netica equations follow most of the usual standards for mathematical equations, and are similar to

programming in Java, C or C++. The usual mathematical operators (+, -, *, /, etc.), and the usual

functions (min, abs, sin, etc.) can be used, parenthesis are used for grouping, and numeric constants are in

their usual form (e.g. 3, -4.2, 5.3e-12).

Left-Hand Side: For a deterministic node, the part of an equation to the left-hand side of the equals

symbol consists of the name of the node, an open parenthesis, a list of the names of the parents separated

by commas, and a close parenthesis (if you have defined link names, you must use those instead of parent

names). For instance, if the equation is for node Position, and the parents of Position are Velocity, Time

and Mode, the left hand side could be:

Position (Velocity, Time, Mode) = ...

Note that the spaces are not required, there may be more spaces if desired, and the parents can be in any

order.

For probabilistic nodes (i.e. "chance nodes"), the left-hand side consists of a lower case "p", an open

parenthesis, the name of the node, a vertical bar, a list of the names of the parents (or link names)

separated by commas, and a close parenthesis. If the node mentioned above had been a probabilistic

node, the left hand side of its equation could be:

p (Position | Velocity, Time, Mode) = ...

86 NETICA API JAVA VERSION 4.18

Right-Hand Side: The right-hand side of an equation may consist of numbers, state names, conditionals,

variables (i.e. parent nodes), constant nodes, and built-in functions, constants or operators. Probabilistic

equations will normally also contain the node the equation is for on the right-hand side (possibly in

several places).

Nodes Allowed: The only nodes which may be mentioned in an equation are: the node the equation

describes, its parents, and any constant node.

Whitespace: As many spaces or line breaks as desired may be placed between any two symbols.

Comments: Comments may be embedded in equations, and they will be ignored by Netica. Everything

between /* and */ will be interpreted as a comment, as will everything between // and the end of the

line.

All Values: If the equation is for a probabilistic node, its right-hand side must provide a probability for

all the node‟s possible values (so the name of the node must appear there at least once). For example, if

node Color (with states red, orange, yellow) has parent Temp (with states low, med, high), its equation

could be:

p (Color | Temp) =

Temp == high ? (Color==yellow ? 1.0 : 0.0) :

Temp == med ? (Color==orange ? 1.0 : 0.0) :

Temp == low ? (Color==orange ? 0.2 : Color==red ? 0.8 : 0.0) : 0

If you use the built-in distributions (such as NormalDist), the above rule is automatically taken care of.

One exception to the above rule is if a node is boolean. Then only the probability for the true state need

be given. For example, if node It_Falls is boolean, its equation could be:

p (It_Falls | Weight, Size) =

Weight/Size > 10 ? 0.10 :

Weight/Size > 5 ? 0.03 :

 0.01

Differences between standard Java (or C/C++) equation syntax: The Netica equation syntax is the

same as in the Java (and C and C++) programming languages, except the part to the left of the assignment

operator (=) is different, and no semicolon is required at the end of the equation.

Furthermore, the Java/C/C++ bitwise operators (such as &, |, ~, ^) are not available in Netica, but the

logical operators &&, ||, ! are. In addition, Netica has a logical „xor‟ function. A final difference is that

the bitwise xor operator ^ of Java/C/C++ is instead used as the power operator by Netica (thus 2^3=8).

All of the C Standard Library math functions (sin, log, sqrt, floor, etc.) are available and use the same

names.

JAVA VERSION 4.18 NETICA API 87

11.3 Equation Conditionals

Suppose continuous node X has the parents Y and B. If you wanted to give P(X|Y) a different equation

involving X and Y for different values of B, you could write a conditional statement using the ? and :

operators, like this:

p(X|Y,B) =

 (B < 2) ? NormalDist (X, 3 + Y, 1) :

 (B < 6) ? NormalDist (X, 2 + Y, 3) :

 UniformDist (X, 0, 10)

The conditions are evaluated in order, so the first covers all cases where B 2, the second covers cases 2

 B 6, and the last covers the remaining cases (i.e. B 6). So, if B is less than 2, X is distributed

normally with mean 3+Y; if it is between 2 and 6 then the mean is 2+Y; and if it is over 6 then X is

distributed uniformly.

If there are more parents, this sort of construct can be nested to provide a tree structure of possible

contingencies.

Here are a couple more examples. They show a way to condition over the states of a discrete node:

p(X|Y,B) =

(B == yellow) ? NormalDist (X, 2, sqrt (Y)) :

(B == orange) ? NormalDist (X, 4, Y) :

(B == red) ? NormalDist (X, 6, Y ^ 2) : 0

p(X|B) =

member (B, CA, TX, FL) ? NormalDist (X, 3, 1) :

member (B, MA, WA) ? NormalDist (X, 5, 1) :

member (B, NY, UT, VA) ? NormalDist (X, 7, 2) :

 UniformDist (X, 0, 10)

Notice that the “fall through” case of the first example above is simply a 0. This indicates that the

designer is counting on B to be one of yellow, orange or red. If B ever has another state, then when

Netica is converting the equation to a table it will give a warning message that “for n/N conditions, no

nonzero probability was discovered by sampling” (providing no sampling uncertainty is being added).

In the last example, the fall through case gives a uniform distribution. If extra states are later added to B,

then they will just fall through and use the uniform distribution.

88 NETICA API JAVA VERSION 4.18

11.4 Converting an Equation to a Table

As mentioned earlier, all equations must be converted to tables before compiling a net or doing net

transforms like absorbing nodes or reversing links. The procedure is done by the following three steps:

1. If the node, or any of its parents, is a continuous node that has not yet been discretized, then call

Node.setLevels() to discretize it. The finer the discretization, the more accurate, but the

bigger the tables will be.

2. If the node doesn‟t already have its equation, call Node.setEquation(), passing in the equation

string.

3. Finally, call Node.equationToTable(). Note that if you later change the equation for the

node, or the discretization of the node or of any of its parents, or the finding of a constant node

referred to by the equation, you must repeat this step before the changes will take effect. With

the parameters passed to this function you can control the number of samples in any Monte

Carlo integration that is required, whether the final CPT will include uncertainty due to the

sampling process, and you can blend tables with those produced by learning from data, other

equations, or manual CPT entry into Netica Application.

If Netica reports errors in the above steps, it is often helpful to debug the equation using Netica

Application. If there is a problem with the syntax of an equation, when you enter it into Netica

Application‟s node property dialog box, the cursor will be placed on the problem while the error message

is displayed. From Netica Application‟s menu, you can choose “Equation To Table” to check if there is

going to be any problem with the equation, and conveniently view the resulting CPT to see if it is what

you expect.

11.5 Equations and Table Size

The size of the table generated is the product of the number of states of the node with the numbers of

states of each of its parent nodes. So if a node has many states, or many parents, then the tables may be

very large, and Netica may report that it doesn‟t have enough memory for the operation. You can

alleviate the problem by eliminating unnecessary parents, introducing intermediate variables, or using

more course discretizations (perhaps have more than one node for the same variable, with different

discretizations depending on which node it is a parent for). If Netica creates extremely large tables, it

may starve other processes of memory, or result in very slow virtual memory hard disk activity, so you

might want Netica to instead just report that it doesn‟t have enough memory. In that case, you can limit

the amount of memory available to Netica with Environ.setMemoryUsageLimit().

JAVA VERSION 4.18 NETICA API 89

11.6 Link Names

In the simplest way of writing equations, the names of the parent nodes appear in the equation. However,

you might want a more modular representation, so that you can disconnect some of the parent nodes and

hook the node up to new parents without having to change all the parent names within the equation.

Or perhaps you duplicate the node to use with new parents. Or you put the node in a network library

without any parents. Or you want to copy the equation from one node to another, without changing all

the node names.

The way to do that is to use input names, sometimes called link names. They provide an argument name

for each link entering the node (and therefore a proxy for each parent node). You can set them with

Node.setInputName(). You refer to them in your equation in exactly the same way you would the

corresponding parent name. When a parent is disconnected, the link name will remain.

Note. If link names are defined for a node, they must be used instead of the parent names.

11.7 Referring to States of Discrete Nodes

To refer to the states of a discrete or discretized node, You can use the state names of a discrete node as

constants in an equation. For example, if node Color has states red, green, blue and yellow, and node

Temperature has states cool and warm, you could write:

Temperature (Color) = member (Color, red, yellow) ? warm : cool

Each state name only has meaning relative to the node it‟s for. Usually when you use a state name,

Netica can identify that node from context. However, if Netica doesn‟t know which node a state name

refers to (e.g. it gives an unknown value error message), you can indicate which node by following the

state name with a double-dash and then the name of the node. Continuing with the above example, if a

new node Switch could take on the values 0, 1 and 2, you could write:

Color (Switch) = select0 (Switch, red--Color, yellow, blue)

The “--Color” was not required on “yellow” and “blue”, because the context was carried over from “red--

Color”, but it could be put there as well.

If a discrete node has a numeric value associated with each state (see Node.setLevels()), that numeric

value can be used in an equation instead of the state name.

90 NETICA API JAVA VERSION 4.18

Alternatively, you can use the state index (numbering starts at 0) preceded by a hash # character.

However, it is recommended to use the names or values, because they are more readable, less error-prone

and more robust to future changes to the node, such as the adding or re-ordering of states.

11.8 Constant Nodes as Adjustable Parameters

Sometimes it is useful to have an equation parameter that normally acts as a fixed constant, but which you

can change from time to time. That is the purpose of a constant node.

You create a constant node by addinga nature node to the network, and then converting it to a constant

node by calling Node.setKind(). You can also set other characteristics of a constant node in the same

way as any other node, such as giving it state names. To set or change the value of a constant node, enter

the value in the same way as you would enter a finding.

You can refer to the value of a constant node anywhere in any node‟s equationby using the constant

node‟s name. It should not appear in the argument list on the left hand side of the = symbol. No link is

required.

When you convert the equation to a table, the value of any constant nodes it references will be used. If

you change the value of a constant node, you must rebuild the table for the change to take effect.

11.9 Tips on Using Equations

 It is often helpful to debug equations using Netica Application. If there is a problem with the

syntax of an equation, it leaves the cursor on the problem while it displays an error message. You

can choose “Equation To Table” from the menu to check that, and easily view the resulting CPT

to see if it is what you expected.

 The tables generated by equations may result in large files (and therefore slow reading), so you

may want remove the nodes‟ tables with Node.deleteTables(), before saving it to file. Later,

when you restore the net from file, you call Node.equationToTable() to fully restore them.

 If you need to define intermediate variables to simplify the equations, implement them as new

(intermediate) nodes.

JAVA VERSION 4.18 NETICA API 91

11.10 Specialized Examples

State Comparisons: Suppose the states of node Source are CA, TX, FL, BC and NY. The states of node

Dest are TX, NY, MA and UT. We want to know if cross-border travel is required to transport from

Source to Dest, and that is indicated by the boolean node Travel. The equation below works even though

nodes Source and Dest have different sets of states, and in a different order.

Travel (Source, Dest) = (Source != Dest)

Additive Noise: Say you want to represent something like:

x1 = x2 + gauss (0, 0.2) which could indicate that x1 is the same as x2, but with the addition of gaussian

noise having mean 0 and s = 0.2. You could do this by defining a new node x3, and setting the equations

of x1 and x3 as:

X1 (X2, X3) = X2 + X3

p(X3) = NormalDist (X3, 0, 0.2)

Multiple Discretizations: Sometimes it is beneficial to use more than one node to represent a single

continuous variable, but with each discretized differently. For example, the more course one may be a

parent for another node whose CPT would be too big with a finer discretization, while the finer one would

serve as a parent for nodes requiring more accuracy. Put a link from the finer node to the courser, and

give the courser node an equation like:

X5 (X20) = X20

Noisy-Or: To create a noisy-or node, just create a regular boolean nature node, put links to it from the

possible causes, give it a noisy-or equation, and use that to build its CPT.

For example, if C1, C2 and C3 are boolean nodes representing causes of boolean node E, and there are

links from each Ci to E, then E could have the noisy-or equation:

p (E | C1, C2, C3) =

NoisyOrDist (E, 0, C1, 0.5, C2, 0.3, C3, 0.1)

For its meaning, see the NoisyOrDist description. The causes, and even the link parameters, can be more

complex expressions. For example:

p (Bond | Temperature, BackTemp, Pressure, Switch, Eff)=

NoisyOrDist (Bond, 0.001,

Temperature > BackTemp, 0.5,

Pressure == high, 0.3,

Switch, 0.9 * Eff)

For more information on using Netica‟s Noisy-Or, Noisy-And, Noisy-Max and Noisy-Sum functions,

contact Norsys for the “Noisy Or, Max, Sum” document.

92 NETICA API JAVA VERSION 4.18

11.11 Equation Constants, Operators, and Functions

A: Built-in Constants

The following constants may be used in equations:

 pi = 3.141592654

 deg = radian per degree = pi / 180

If you wish to have the constant e (= 2.7182818) in your equation, use exp(1).

B: Built-in Operators

Both the functional and the operator notations shown below are accepted.

Functional Notation Operator Notation

neg (x) - x

not (b) ! b

equal (x, y) x == y

not_equal (x, y) x != y

approx_eq (x, y) x ~= y

less (x, y) x < y

greater (x, y) x > y

less_eq (x, y) x <= y

greater_eq (x, y) x >= y

plus (x1, x2, ... xn) x1 + x2 + ... + xn

minus (x, y) x - y

mult (x1, x2, ... xn) x1 * x2 * ... * xn

div (x, y) x / y

mod (x, base) x % base

power (x, y) x ^ y

and (b1, b2, ... bn) b1 && b2 && ... && bn

or (b1, b2, ... bn) b1 || b2 || ... || bn

if (test, tval, fval) test ? tval : fval

C: Built-in Functions

Netica contains an extensive library of built-in functions which you can use in your equations.

The probability distribution functions all have a name that ends with "Dist" (e.g. NormalDist). Their first

argument is always the node for which the distribution is for. So if node X has parent m, you could write:

JAVA VERSION 4.18 NETICA API 93

 P (X | m) = NormalDist (X, m, 0.2)

to indicate that X has a normal (Gaussian) distribution with mean given by parent m, and a standard

deviation of 0.2.

Common Math

abs (x) absolute value

sqrt (x) square root (positive)

exp (x) exponential (e ^ x)

log (x) logarithm base e

log2 (x) logarithm base 2

log10 (x) logarithm base 10

sin (x) sine (x is in radians)

cos (x) cosine

tan (x) tangent

asin (x) arc sine (result is in radians)

acos (x) arc cosine

atan (x) arc tangent

atan2 (y, x) atan(y/x) but considers quadrant

sinh (x) hyperbolic sine

cosh (x) hyperbolic cosine

tanh (x) hyperbolic tangent

floor (x) floor (highest integer ≤ x)

ceil (x) ceiling (lowest integer ≥ x)

integer (x) integer part of number (same sign)

frac (x) fraction part of number (same sign)

94 NETICA API JAVA VERSION 4.18

Special Math

round (x)

roundto (dx, x)

approx_eq (x, y)

eqnear (reldiff, x, y)

clip (min, max, x)

sign (x)

xor (b1, b2, ... bn)

increasing (x1, x2, ... xn)

increasing_eq (x1, x2, ... xn)

min (x1, x2, ... xn)

max (x1, x2, ... xn)

argmin0/1 (x0, x1, ... xn)

argmax0/1 (x0, x1, ... xn)

nearest0/1 (val, c0, c1, ... cn)

select0/1 (index, c0, c1, ... cn)

member (elem, s1, s2, ... sn)

factorial (n)

logfactorial (n)

gamma (x)

loggamma (x)

beta (z, w)

erf (x)

erfc (x)

binomial (n, k)

multinomial (n1, n2, ... nn)

Continuous Probability Distributions

UniformDist (x, a, b)

TriangularDist (x, m, w)

Triangular3Dist (x, m, w1, w2)

TriangularEnd3Dist (x, m, a, b)

NormalDist (x, ,)

LognormalDist (x, ,)

ExponentialDist (x,)

GammaDist (x, ,)

WeibullDist (x, ,)

BetaDist (x, ,)

Beta4Dist (x, , , c, d)

CauchyDist (x, ,)

LaplaceDist (x, ,)

ExtremeValueDist (x, ,)

ParetoDist (x, a, b)

ChiSquareDist (x,)

StudentTDist (x,)

FDist (x, 1, 2)

JAVA VERSION 4.18 NETICA API 95

Discrete Probability Distributions

SingleDist (k, c)

DiscUniformDist (k, a, b)

BernoulliDist (b, p)

BinomialDist (k, n, p)

PoissonDist (k, m)

HypergeometricDist (k, n, s, N)

NegBinomialDist (k, n, p)

GeometricDist (k, p)

LogarithmicDist (k, p)

MultinomialDist (bc, n, k1, p1, k2, p2, ... km, pm)

NoisyOrDist (e, leak, b1, p1, b2, p2, ... bn, pn)

NoisyAndDist (e, inh, b1, p1, b2, p2, ... bn, pn)

NoisyMaxTableDist (...)

NoisySumTableDist (...)

11.12 Special Math and Distribution Functions Reference

Legend: = Discrete Probability Distribution

(the first argument is a discrete variable that the distribution is over)

 = Continuous Probability Distribution

(the first argument is a continuous variable that the distribution is over)

approx_eq (x, y) x ~= y = eqnear (2e-5, x, y)

 where x and y are unrestricted real numbers

Returns TRUE iff x is equal to y, within a small relative tolerance.

Usually the operator form of this function is most convenient: x ~= y

It is meant for comparing computed real number values that might not be exactly equal due to slight numerical inaccuracies.

To have control of the tolerance, use eqnear.

argmax0 (x0, x1, ... xn) = i s.t. (xi ≥ xj) for all j

argmax1 (x1, x2, ... xn)

 where xi are unrestricted real numbers

Returns the index (position in list) of the argument with the highest value. If there are several with the same highest value, then

the index of the first occurrence will be returned. The first argument has index 0 if argmax0 is used, or index 1 if argmax1 is

used. At least one argument must be passed. See also max, argmin, select.

Example: argmax0 (1, -6.6, 3.4, 1.26, 3.4) returns 2

 argmax1 (1, -6.6, 3.4, 1.26, 3.4) returns 3

96 NETICA API JAVA VERSION 4.18

argmin0 (x0, x1, ... xn) = i s.t. (xi ≤ xj) for all j

argmin1 (x1, x2, ... xn)

 where xi are unrestricted real numbers

Returns the index (position in list) of the argument with the lowest value. If there are several with the same lowest value, then

the index of the first occurrence will be returned. The first argument has index 0 if argmin0 is used, or index 1 if argmin1 is

used. At least one argument must be passed. See also min, argmax, select.

Example: argmin0 (10, 6.6, 3.4, 126, 3.4) returns 2

 argmin1 (10, 6.6, 3.4, 126, 3.4) returns 3

BernoulliDist (b, p) = b ? p : 1 - p

 Required: 0 ≤ p ≤ 1 b boolean

This is the distribution for a single "Bernoulli trial", in which p is the probability of an outcome labeled "success" occurring. b is

a boolean that is true if the “success” occurs. An example is flipping a coin and checking for the event of heads appearing.

_BernoulliDist

This is a distribution that Netica uses internally to represent the Bernoulli distribution (BernoulliDist). If you get an error

message saying there was an error evaluating _Bernoulli (k, p), where k and p are numbers, then your equation is supplying

illegal values, even if you never explicitly used _Bernoulli in your equation.

For instance, if your equation for boolean B is P(B|x) = x / 10 and values of x can go up to 11, then _Bernoulli (1, 1.1) will be

illegal, since you are supplying 1.1 as a probability (and Netica can‟t normalize it, since no probability for B being false is given).

beta (z, w) = gamma (z) gamma (w) / gamma (z + w)

 where: z > 0 w > 0

Returns the beta function of z and w. BetaDist is the beta probability distribution, which is based on the beta function.

BetaDist (x, ,) = x
-1

 (1-x)
-1

/ beta (,)

 Required: > 0 > 0

The beta distribution over x. Almost any reasonably smooth unimodal distribution on [0,1] can approximated to some degree by

a beta distribution (if its not on [0,1], see Beta4Dist).

Beta4Dist (x, , , c, d) = BetaDist ((x - c) / (d - c), ,)

 Required: 0 ≤ x ≤ 1 > 0 > 0

Also known as the “Generalized Beta Distribution”, this is a beta distribution that has been shifted and scaled, so that the pdf has

nonzero values from x = c to x = d, instead of from x=0 to x=1. This distribution has great flexibility to roughly fit

almost any smooth, unimodal distribution with no tails (i.e., only nonzero over a finite range).

binomial (n, k) = n! / (k! * (n-k)!)

 Where: 0 ≤ k ≤ n n and k are integers

Returns the binomial coefficient (n k). That is the number of different k-sized groups that can be drawn from a set of n distinct

elements. See also the multinomial function.

BinomialDist is the binomial probability distribution, which is based on the binomial coefficient..

BinomialDist (k, n, p) = binomial (n, k) p
k
 (1-p)

n-k

 Required: k and n are integers, 0 ≤ k ≤ n, and 0 ≤ p ≤ 1

A "binomial experiment" is a series of n independent trials, each with two possible outcomes (often labeled "success" and

"failure"), with a constant probability, p, of success. The total number of successes, k, is given by the binomial distribution.

JAVA VERSION 4.18 NETICA API 97

If there are more than two possible outcomes, use the multinomial distribution (MultinomialDist). If the sampling is

without replacement, use the hypergeometric distribution (HypergeometricDist)

For large n, and p not too close to 0 or 1, the binomial distribution can be approximated by a normal distribution (NormalDist)

with mean m = n p, and variance = n p (1-p). For large n, and p close to 0, it can be approximated by a Poisson distribution

(PoissonDist) with parameter = n p. As n → ∞ these are the limiting distributions (providing p=constant in the normal

case, and p → 0, np=constant in the Poisson case).

CauchyDist (x, ,) = 1 / ((1 + ((x-)/)
2
))

 Required:

Although real-world data rarely follows a Cauchy distribution, it is useful because of its unusualness. For example, although it is

symmetric about (which is therefore its median and mode), it doesn't have a mean (or variance, etc.) because the appropriate

integrals don't converge. The C(0,1) distribution is also Student's t distribution with degrees of freedom = 1.

ChiSquareDist (x,) = x
(/2-1)

 / [exp (x/2) 2
(/2)

 gamma (/2)]

 Required: x ≥ 0 > 0 is an integer

This is the distribution of Z1
2
 + Z2

2
 + ... Z

2
 where Zi are independent standard normal (NormalDist) variates.

 is usually called the “degrees of freedom” of the distribution.

clip (min, max, x) = (x < min) ? min : (x > max) ? max : x

 where min ≤ max

Returns x, unless it is less than min (in which case it returns min), or more than max (in which case it returns max).

See also the functions: min, max.

DiscUniformDist (k, a, b) = 1 / (b - a + 1)

 Required: a ≤ b k, a, b are integers

This distribution represents the situation where k has an equal probability of taking on any of the integer values from a to b

inclusive (where a and b are integers). If k were continuous, then it would be a continuous uniform distribution.

eqnear (reldiff, x, y) = (| X - Y | / max (|X|, |Y|) ≤ reldiff)

 where reldiff ≥ 0

Returns TRUE iff x is equal to y, within reldiff. To use a tiny built-in value for reldiff, suitable for numerical floating

point inaccuracy, use approx_eq.

erf (x) =

2

x

0

2 dt)(-t exp

 where x is an unrestricted real

This returns the error function of x. It is useful for calculating integrals of the normal distribution function (NormalDist).

If x is large, you can obtain better accuracy with erfc.

erfc (x) = 1 – erf(x)

 where x is an unrestricted real

This returns the complementary error function of x. It is useful for calculating an integral of a tail of a normal distribution

function (NormalDist). It would be easy enough to just use 1-erf(x), but this provides better numerical accuracy when x

is large (so erf(x) is very close to 1).

ExponentialDist (x,) = exp (- x)

 Required: > 0

98 NETICA API JAVA VERSION 4.18

If events occur by a Poisson process, then the time between successive events is described by the exponential distribution (where

 is the average number of events per unit time).

ExtremeValueDist (x, ,) = exp (-exp (-(x-)/) - (x-)/) /

 Required: > 0

This distribution is the limiting distribution for the smallest or largest values in large samples drawn from a variety of

distributions, including the normal distribution Also known as the "Fisher-Tippet distribution", "Fisher-Tippet Type I

distribution" or the "log-Weibull distribution".

FDist (x, 1, 2)

 Required: > 0 2 > 0

The ratio of two chi-squared variates X1 and X2, each divided by their degrees of freedom: (X1/1)/(X2/2) follows an F-

distribution. Also known as "Snedecor's F distribution", "Fisher-Snedecor distribution", "F-ratio distribution" and " variance-

ratio distribution ".

factorial (n) = n (n – 1) (n – 2) ... 1

 where n ≥ 0 n is an integer

Returns the factorial of n, which is the product of the first n integers.

factorial(n) is often written as n!

factorial(0) = 1

Even fairly small values of n (around 170) can cause factorial to overflow. For that reason calculations with the factorial

function are often done using the logarithm of the results, for which you can use logfactorial.

If n is not an integer you may want to use the gamma function, which for integer values is related to factorial by: factorial

(n) = gamma (n + 1) but which is also defined for non-integer values.

gamma (x)

 where x ≥ 0

Returns the gamma function of x.

The gamma function is normally defined for negative values of x as well, but Netica cannot compute these.

Don‟t confuse this function with GammaDist, the gamma probability distribution.

Even fairly small values of x (around 170) can cause gamma to overflow. For that reason calculations with the gamma function

are often done using the logarithm of the results, for which you can use loggamma.

For integer values of x, the gamma function is related to the factorial function by: factorial (n) = gamma (n + 1).

GammaDist (x, ,) = x
-1

 e
-

 / (gamma()

)

 Required: > 0 > 0

If events occur by a Poisson process, then the time required for the occurrence of events is described by the gamma distribution

(where is the average time between events).

For = 1, this is the exponential distribution (ExponentialDist) with = 1 / . For = 2, this is the chi-square

distribution (ChiSquareDist) with degrees of freedom = 2 .

GeometricDist (k, p) = p (1-p)
k

 Required: 0 < p ≤ 1 k is an integer

This distribution describes the number of Bernoulli trials (independent trials, with outcomes labeled "success" or "failure", and

constant probability p of success) before the first success occurs (i.e., includes only the failure trials). An example would be the

number of coin flips resulting in tails before the first head is seen.

JAVA VERSION 4.18 NETICA API 99

Situations where Bernoulli trials are repeated until the nth success are called "negative binomial experiments", and the geometric

distribution is a special case of the negative binomial distribution (NegBinomialDist) with n = 1.

HypergeometricDist (k, n, s, N) = binomial (s,k) binomial (N-s, n-k) / binomial (N,n)

 Required: N ≥ 0 0 ≤ n ≤ N 0 ≤ s ≤ N k, N, n and s are integers

This provides the probability that there are k "successes" in a random sample of size n, selected (without replacement) from N

items of which s are labeled "success" and N-s labeled "failure".

It is used in place of the binomial distribution (BinomialDist) for situations which sample without replacement.

increasing (x1, x2, ... xn) = (x1 < x2) && (x2 < x3) && ... && (xn-1 < xn)

 where xi are unrestricted real numbers

Returns TRUE iff each xi is greater than the previous one. If you wish the test to be “greater than or equals”, use

increasing_eq.

increasing_eq (x1, x2, ... xn) = (x1 ≤ x2) && (x2 ≤ x3) && ... && (xn-1 ≤ xn)

 where xi are unrestricted real numbers

Returns TRUE iff each xi is greater than the previous one. If you wish the test to be just “greater than”, use increasing.

LaplaceDist (x, ,) = (1/(2)) exp (- |x-|/)

 Required:

Its pdf is two exponential distributions spliced together back-to-back. The difference between two iid exponential distribution

random variables follows a Laplace distribution. Also known as the "double exponential" distribution.

LogarithmicDist (k, p) = -(p^k)/ (k log (1-p))

 Required: 0 < p < 1 k is an integer

Also known as the "logarithmic series distribution".

logfactorial (n) = log (n (n – 1) (n – 2) ... 1)

 where n ≥ 0 n is an integer

Returns the natural logarithm of the factorial of n, that is: log (n!).

You could also use the factorial function, but this helps to avoid overflow when n is large (>170).

If n is not an integer you may want to use the loggamma function, which for integer values is related to logfactorial by:

logfactorial (n) = loggamma (n + 1) but which is also defined for non-integer values.

loggamma (x) = log (gamma (x))

 where x ≥ 0

Returns the natural logarithm of the gamma function of x.

It may be used to avoid overflow when x is large. The gamma function is normally defined for negative values of x as well, but

Netica cannot compute these.

LognormalDist (x, ,) = N (log (x), ,) / x, where N is the “normal distribution”

 = (1 / [x sqrt(2)]) exp (-[(log(x) -) /]
2
 / 2)

 Required: > 0

The lognormal distribution results when the logarithm of the random variable is described by a normal distribution

(NormalDist). This is often the case for a variable which is the product of a number of random variables (by the central limit

theorem). Notice that the „n‟ of Lognormal is not capitalized, indicating that this is not the same as the logarithm of the normal

distribution.

100 NETICA API JAVA VERSION 4.18

max (x1, x2, ... xn) = xi s.t. (xi ≥ xj) for all j

 where xi are unrestricted real numbers

Returns the maximum of x1, x2, … xn.

At least one argument must be passed. If you just want the index of the maximum (i.e. its position in the list), use argmax.

See also min.

Example: max (-10, 6.6, 3.4, -126, 3.4) returns 6.6

member (elem, s1, s2, ... sn) = (elem == s1) || (elem == s2) || ... || (elem == sn)

 where elem and all si must be the same type

Returns TRUE iff one of the si arguments has the same value as elem.. See also: nearest, select

Examples: member (1, -6, 3, 1, 3) returns TRUE
 member (C, blue, red) and C = red returns TRUE

min (x1, x2, ... xn) = xi s.t. (xi ≤ xj) for all j

 where xi are unrestricted real numbers

Returns the minimum of x1, x2, … xn.

At least one argument must be passed.

If you just want the index of the minimum (i.e. its position in the list), use argmin. See also max.

Example: min (10, 6.6, 3.4, 126, 3.4) returns 3.4

multinomial (n1, n2, ... nn) = (n1 + n2 + ... nn)! / (n1! * n2! * ... nn!)

 where ni ≥ 0 ni are integers

Returns the number of ways an (n1+n2+…nn) sized set of distinct elements can be partitioned into sets of size n1, n2, … nn.

If partitioning into only two sets, this is the same as binomial.

MultinomialDist (bc, n, k1, p1, k2, p2, ... km, pm)

 Required: n >= 0 ki >= 0 0 <= pi <= 1 sum pi != 0 bc boolean n, ki integer

The multinomial distribution is a generalization of the binomial distribution to the situation where there are not just two outcomes

(usually labeled "success" and "fail"), but rather m outcomes, each having probability pi (i=1..m), and we are interested in the

number of occurrences of each outcome (ki), given that a total of n trials are performed.

To create a multinomial distribution between the ki and n nodes, first add to the net a new boolean node, in this example called

bc. Then add links from the nodes of all the non-fixed parameters (usually n and all ki) to node bc. At node bc, put an

equation with MultinomialDist, and convert the equation to a table. Finally, give node bc a finding of true.

Normally the sum of pi is one, but Netica will just normalize the pi if that is not the case.

If m is 2, then k2 is deterministically determined by k1 (i.e., k2 = n - k1), and k1 is distributed by BinomialDist.

Each of the ki separately has a binomial distribution with parameters n and pi, and because of the constraint that the sum of the

ki's is n, they are negatively correlated.

The Dirichlet distribution is the conjugate prior of the multinomial in Bayesian statistics.

For assistance on using this function, contact Norsys (support@norsys.com).

nearest0 (val, x0, x1, ... xn) = i s.t. (|val - xi| ≤ |val - xj|) (xi ≥ xj) for all j

nearest1 (val, x1, x2, ... xn)

 where val and xi are unrestricted real numbers

mailto:support@norsys.com

JAVA VERSION 4.18 NETICA API 101

Returns the index (position in list) of the argument with the value closest to val (as measured by the absolute value of the

difference). If there are several with the same smallest difference, then the index of the first occurrence will be returned. The

first x argument has index 0 if nearest0 is used, or index 1 if nearest1 is used.

Must be passed at least 2 arguments (val and an x). See also: member

Example: nearest0 (1, 1, 3.4, 1, 3.4) returns 0

 nearest1 (5e3, -6.6, -3.4, 126) returns 3

NegBinomialDist (k, n, p) = binomial (n+k-1, k) p
n
 (1-p)

k

 Required: 0 ≤ n 0 < p ≤ 1 k and n are integers

The negative binomial distribution is the distribution of the number of failures that occur in a sequence of trials before n

successes have occurred, in a Bernoulli process (independent trials, with outcomes labeled "success" or "failure", and constant

probability p of success).

The limit of a negative binomial distribution as n → ∞, (1-p) → 0, n(1-p) → , is a Poisson distribution with

parameter .

If n = 1, then this distribution is just the geometric distribution.

NoisyAndDist(e,inh,b1,p1,... bn,pn) = P(e) = (1-inh) product i=1 to n (bi? 1: (1-pi))

 Required: 0 ≤ pi ≤ 1 0 ≤ inh ≤ 1 e, bi boolean

Use this distribution when there are several possible requirements for an event, and each has a probability that it will actually be

necessary. Each of the necessary requirements must pass for the event to occur. Even then there is a probability (given by inh)

that the event may not occur (make inh zero to eliminate this).

Each bi is a booleanvariable, which when TRUE indicates a requirement passed. e is also a boolean, which indicates whether the

event occurs. Each of the pi are the probability that bi will be required to cause e.

If inh is zero, and only one possible requirement is FALSE, say bk, then the probability for e is 1- pk. If more possible

requirements are FALSE, the probability will be lower. And if inh is nonzero, the probability will be lower. Reducing a pi

always results in the same or higher P(e).

pi can be considered the “strength” of the relation between e and bi, with zero indicating independence (link could be removed),

and 1 indicating maximum effect. See also NoisyOrDist.

NoisyMaxDist(...)

NoisySumDist(...)

For documentation, contact Norsys to obtain the document titled “Noisy Or, Max, Sum”.

NoisyOrDist(e,leak,b1,p1,... bn,pn) = P(e) = 1–[(1-leak) product i=1 to n (bi? (1-pi): 1)]

 Required: 0 ≤ pi ≤ 1 0 ≤ leak ≤ 1 e, bi boolean

Use this distribution when there are several possible causes for an event, any of which can cause the event by itself, but only with

a certain probability. Also, the event can occur spontaneously (without any of the known causes being true), with probability

leak (make this zero if it can‟t occur spontaneously).

Each bi is a booleanvariable, which may cause the event when its TRUE. e is also a boolean, which indicates whether the

event occurs. Each of the pi are the probability that e will occur if bi is TRUE in isolation.

If leak is zero, and only one possible cause is TRUE, say bk, then the probability for e is pk. If more possible causes are

TRUE, P(e) will be greater. And if leak is nonzero, P(e) will be greater. Reducing a pi always results in the same or lower

P(e).

pi can be considered the “strength” of the relation between e and bi, with zero indicating independence (link could be removed),

and 1 indicating maximum effect. See Pearl88, page 184 for more information (his qi = 1 – pi). See also NoisyAndDist.

Example: P (Effect | Cause1, Cause2) = NoisyOrDist (Effect, 0.1, Cause1, 0.2, Cause2, 0.4)

102 NETICA API JAVA VERSION 4.18

NormalDist (x, ,) = [1/(sqrt(2))] exp (-[(x-)/]
2
 / 2)

 Required: > 0

The normal (Gaussian) distribution of mean and standard deviation .

The normal distribution, or approximations of it, arise frequently in nature (this is partly explained by the central limit theorem).

Since it also has many convenient mathematical properties it is the most commonly used continuous distribution.

For this distribution, 68.2% of the probability is within 1 standard deviation of the mean, 95.4% is within 2 standard deviations,

and 99.74% is within 3 standard deviations.

If = 0 and = 1, it is known as a “standard normal” distribution.

ParetoDist (x, a, b) = (a/b) (b/x) ^ (a+1)

 Required: a > 0 b > 0

The Pareto distribution is a power law probability distribution found in a large number of real-world situations, such as the

distribution of wealth among individuals, frequencies of words, size of particles, size of towns/cities, areas burnt in forest fires,

size of some fractal features etc. These are situations where there are many that are small and a few that are large (like the Pareto

principle, in which 20% of the population owns 80% of the wealth).

For any value of a, the distribution is "scale-free", which means that no matter what range of x one looks at, the proportion of

small to large events is the same (i.e., the slope of the curve on any section of the log-log plot is the same).

PoissonDist (k,) =
!

k

k

e

 Required: k ≥ 0 > 0 k is an integer

If events occur by a Poisson process, then the number of events that occur in a fixed time interval is described by the Poisson

distribution (where is the average number of events per unit time).

round (x) = floor (x + 1/2)

 where x is an unrestricted real

Rounds x to the nearest integer. To round off to other quantities, use roundto.

roundto (dx, x) = dx * floor ((x + dx/2) / dx)

 where dx > 0

Rounds x to the nearest dx, which may be less than or greater than 1.

For example, roundto(10,17) rounds 17 to the nearest 10, and so it returns 20.

If dx = 1, then this is the same as the round function.

select0 (index, x0, x1, ... xn) = xi s.t. i == index

select1 (index, x1, x2, ... xn)
 where index is integer, xi are all the same type

 select0: 0 ≤ index < n

 select1: 1 ≤ index ≤ n

Returns the value of the x argument at position index: xindex

The first x argument is at index 0 if select0 is used, and at index 1 if select1 is used.

Must be passed at least 2 arguments (index and an x). See also: member

Example: select0 (1, -6.6, 3.4, 1.26, 3.4) returns 3.4

 select1 (1, -6.6, 3.4, 1.26) returns –6.6

JAVA VERSION 4.18 NETICA API 103

sign (x) = (x > 0) ? 1 : (x < 0) ? -1 : 0

 where x is an unrestricted real

Returns 1 if x is positive, -1 if x is negative, and 0 if x is zero. See also: abs

SingleDist (k, c) = (k == c) ? 1 : 0

 Required: k and c are integers

The single point distribution indicates that k = c. The probability that k is any other value is 0. This is the discrete version of a

Dirac delta.

StudentTDist (x,) = sqrtpix^^

 Required: > 0

The t-distribution or Student's t-distribution arises in the problem of estimating the mean of a normally distributed population

when the sample size is small.

TriangularDist (x, m, w) = (|x - a| > w) ? 0: (w - |x - a|) / w
2

 Required: w > 0

The graph of this distribution has a triangular shape, with the highest point at x = a, and nonzero values only from a - w to a +

w.

Triangular3Dist (x, m, w1, w2)

 Required: w1 >= 0 w2 >= 0 w1 & w2 can't both be 0

The pdf has a triangular shape, with the highest point at x = m, and nonzero value from m - w1 to m + w2.

TriangularEnd3Dist (x, m, a, b)

 Required: a <= m b >= m b > a

The pdf has a triangular shape, with the highest point at x = m, and nonzero value from a to b.

UniformDist (x, a, b) = 1 / (b - a)

 Required: a < b

This is the distribution to use when the minimum and maximum possible values for a variable are known, but within that range

there is no knowledge of which value is more likely than another. It has a constant value from x = a to x = b, and zero value

outside this range.

WeibullDist (x, ,) = (/) (x/)
-1

 exp (-(x/)

)

 Required: > 0 > 0

The Weibull distribution is often used for reliability models, since if the failure rate of an item (i.e., percent of the remaining ones

which fail, as a function of time) is given as: Z(t) = r t-1, then the distribution of item lifetimes is given by the Weibull

distribution with r = / .

xor (b1, b2, ... bn) = odd (NumberTrue (b1, b2, ... bn))

 where bi are boolean

Returns the exclusive-or of b1, b2 … bn.

This is also known as the parity function, and will return true iff an odd number of bi evaluate to true. See also: and, or, not.

104 NETICA API JAVA VERSION 4.18

12 Bibliography

Russell, Stuart and Peter Norvig (1995) Artificial Intelligence: A Modern Approach, Prentice Hall.

Pearl, Judea (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,

 Morgan Kaufmann, San Mateo, CA.

Lauritzen, Steffen L. and David J. Spiegelhalter (1988) "Local computations with probabilities on

 graphical structures and their application to expert systems" in J. Royal Statistics Society B,

 50(2),157-194.

Cowell, Robert G., Dawid, A.P. et al (1999) Probabilistic Networks and Expert Systems, Springer-Verlag.

Spiegelhalter, David J., Philip Dawid, et all (1993) “Bayesian analysis in expert systems” in Statistical

 Science, 8(3), 219-283.

Neapolitan, Richard E. (2004) Learning Bayesian Networks, Pearson Education, Inc./Prentice Hall.

Korb, Kevin and Ann E. Nicholson (2004) Bayesian Artificial Intelligence, Chapman & Hall/CRC.

Shachter, Ross D. (1986) “Evaluating influence diagrams” in Operations Research, 34(6), 871-882.

Shachter, Ross D. (1988) "DAVID: Influence diagram processing system for the Macintosh" in

 Uncertainty in Artificial Intelligence 2, John F. Lemmer and L. N. Kanal (Eds.), North-Holland,

 Amsterdam.

Shachter, Ross D. (1989) “Evidence absorption and propagation through evidence reversals” in

 Uncertainty in Artificial Intelligence 1989, 303-308.

JAVA VERSION 4.18 NETICA API 105

13 Functions by Category

System

Environ constructor Initializes the Netica system

Environ finalize Signals an end to using Netica system, and frees all possible resources

(e.g. memory, close any open files)

Environ g/setArgumentChecking Adjusts the amount that Netica functions check their arguments

Environ getVersion/getVersionString Gets the software version of Netica currently running

Environ g/setMemoryUsageLimit Adjusts the amount of memory that Netica can allocate for tables

Environ g/setCaseFileDelimChar The symbol to separate data fields in case files created by Netica

Environ g/setMissingDataChar The symbol indicating missing data in case files created by Netica

Error Handling

NeticaError getMessage Returns an error message for the given error report

NeticaError isInCategory Indicates the nature of the error (out of memory, aborted, etc.)

NeticaError getSeverity Returns the severity level of the given error report

NeticaError getIdNumber Returns the error number of the given error report

Environ g/setArgumentChecking Adjusts the amount that Netica functions check their arguments

File Operations

Streamer constructor Creates a stream for the file with the given name

Streamer constructor Creates a stream for reading and writing to buffers in memory

Streamer finalize Closes files, frees resources and deletes either type of stream

Streamer setPassword Sets a password to read or write encrypted files

Environ g/setCaseFileDelimChar The symbol to separate data fields in case files created by Netica

Environ g/setMissingDataChar The symbol indicating missing data in case files created by Netica

Net write Saves a net to a file

Net constructor Reads a net from a file

Net writeFindings Saves a net's current set of findings to a file

Net readFindings Reads findings from a file, and enters into a net

Caseset writeCases Writes all the cases to a file in CSV or UVF format

Caseset addCases Makes the case-set object consist of the cases located in the file

Net reviseCPTsByCaseFile Reads a file of cases to revise probabilities

Net getFileName Name of file (with full path) that net was last written to or read from

106 NETICA API JAVA VERSION 4.18

Findings (Evidence)

Node finding().enterState Enters a discrete finding that a node is in a given state

Node finding().enterStateNot Enters a discrete finding that a node is not in a given state

Node finding().enterReal Enters a real number finding for a continuous node

Node finding().enterLikelihood Enters a likelihood finding for a node (i.e. a soft finding)

Node finding().enterGaussian Enters a finding given by a Gaussian (normal) distribution

Node finding().enterInterval Enters a finding uniform over an interval, zero outside

Node finding().setState Enters a discrete finding, overriding any previous entry

Node finding().setReal Enters a real number finding, overriding any previous entry

Node finding().getState Returns the finding for a node, if there is one

Node finding().getReal Returns the real number finding entered for a continuous node

Node finding().getLikelihood Returns the accumulated findings for a node, as a likelihood vector

Node finding().getKind Returns what kind of finding was entered

Node finding().clear Retracts all findings for a single node

Net retractFindings Retracts all findings (i.e. the current case) from a net

Net getFindingsProbability Returns the joint probability of the findings entered so far

Compiling

Net compile Compiles a net for fast belief updating

Net uncompile Releases the resources (e.g., memory) used by a compiled net

Net sizeCompiled The size and speed of the compiled net (i.e. of the junction tree)

Net reportJunctionTree Returns a string describing the internal compiled junction tree

Net g/setElimOrder The node order used to guide compilation

Net g/setAutoUpdate Automatically propagate beliefs when findings are entered

Node equationToTable Builds the CPT for a node based on the equation given to it

Belief Updating and Inference

Node getBeliefs Returns a node's current beliefs, doing belief updating if necessary

Node getExpectedValue Expected value (and std dev) of a continuous or numeric-valued node

Node getExpectedUtils Returns the expected utility of each choice in a decision node

Node isBeliefUpdated Returns whether a node's beliefs have already been calculated to

account for current findings

Net g/setAutoUpdate Automatically propagate beliefs when findings are entered

Net getJointProbability Returns a specified joint probability, given the findings entered

Net getFindingsProbability Returns the joint probability of the findings entered so far

Net getMostProbableConfig Finds the state for each node which results in the most probable

explanation (MPE)

Net generateRandomCase Creates a case sampled from the net, given the current findings

Net absorbNodes Removes the given nodes while maintaining the joint distribution of the

remaining nodes

Sensitivity getMutualInfo Measures the mutual information between two nodes

Sensitivity getVarianceOfReal Measures how much a finding at one node is expected to reduce the

variance of another node

Node calcState Returns the state of a node calculated from its neighbors, if that can be

done deterministically

Node calcValue Returns the numeric value of a node calculated from its neighbors, if

that can be done deterministically

JAVA VERSION 4.18 NETICA API 107

Learning From Data

Net reviseCPTsByCaseFile Reads a file of cases to revise each node's probabilities

Net reviseCPTsByFindings Uses the current case to revise probabilities

Learner constructor Creates a new object for use in learning CPTs from case data

Learner finalize Deletes a learning object (learner)

Learner learnCPTs Learn CPTs from case data, with choice of algorithm

Learner g/setMaxIterations The maximum number of learning-step iterations (i.e., complete passes

through the data) which will be done when the learner is used

Learner g/setMaxTolerance The minimum change in data log likelihood between consecutive

passes through the data, as a termination condition

Node fadeCPTable Adjusts a node's probabilities for a changing world

Node getCPTable Returns the results of learning

Node getExperTable Determines how much experience was involved in the learning

Node setCPTable Directly sets the probabilities (or starts them off)

Node setExperTable Manually sets the amount of experience (or starts it off)

Decision Nets

Node getExpectedUtils Returns the expected utility of each choice in a decision node

Node setKind Used to create decision nodes and utility nodes

Node Lists

NodeList constructor Creates a new (empty) list of nodes

NodeList add Inserts a node at the given position of a list, making it one longer

NodeList remove Removes the node at the given index of a list, making it one shorter

NodeList set Sets the Nth node of a list to a given node without changing length

NodeList getNode Returns the Nth node of a list (the first node is numbered 0)

NodeList indexOf Returns the position (index) of a node in a list, or -1 if it is not present

NodeList size Returns the number of nodes in a list

NodeList copy constructor Duplicates a list of nodes

NodeList clear Empties a node list without releasing the memory it uses

NodeList finalize Frees the memory used by a list of nodes

Net getNode Returns the node with the given name

Net getNodes Returns a list of all the nodes in the net

Node getParents Returns a list of the parents of a node

Node getChildren Returns a list of the children of a node

Node getRelatedNodes Finds all the nodes that bear a given relationship (such as D-connected,

Markov blanket, ancestors, children, etc.) with a given node

Net getRelatedNodes Finds the nodes that bear a given relationship with a given set of nodes

NodeList mapStateList Change the order of a list of states to match a given node list

Cases (Sets of Findings)

(see also "Findings") To enter a case into a net, and to read it out

Net writeFindings Saves a net's current set of findings to a file

Net readFindings Reads findings from a file, and enters into a net

Net retractFindings Retracts all findings (i.e. the current case) from a net

Net getFindingsProbability Returns the joint probability of the findings entered so far

Net reviseCPTsByFindings The current case is used to revise each node's probabilities

108 NETICA API JAVA VERSION 4.18

Net reviseCPTsByCaseFile Reads a file of cases to revise probabilities

Learner learnCPTs Learn CPTs from case data, with choice of algorithm

Net generateRandomCase Generates a random case in a net, according to the net's distribution

Caseset constructor Creates a new case-set object, initially with no cases

Caseset finalize Deletes and frees all resources used by a case-set object

Caseset addCases Searches the given database, adding cases to a case-set object

Caseset addCases Adds the cases located in the given case file

Caseset writeCases Writes all the cases in the given case-set to a file stream

NetTester testWithCaseset Performance tests a Bayes net with a set of cases

NodeList mapStateList Change the order of a list of states to match a given node list

Sensitivity to Findings (Utility-Free Value of Information)

Sensitivity constructor Creates an object to measure sensitivity

Sensitivity finalize Deletes the sensitivity measuring object

Sensitivity getVarianceOfReal Measure the expected reduction in variance due to a finding

Sensitivity getMutualInfo Measure the mutual information (entropy reduction)

Performance Testing a Net

NetTester constructor Creates a new tester object, for given tests on given nodes

NetTester finalize Deletes a tester object

NetTester testWithCaseset Reads the cases one-by-one, and for each it does inference and grades

the Netica net, gathering statistics

NetTester getConfusion Returns a confusion matrix result of the testing

NetTester getErrorRate Returns the error rate result of the testing

NetTester getLogLoss Returns the logarithmic loss result of the testing

NetTester getQuadraticLoss Returns the quadratic loss result of the testing

Database Connectivity

DatabaseManager constructor Creates a new database manager object for a given database

DatabaseManager finalize Closes connection and deletes a database manager object

DatabaseManager insertFindings Adds current findings within the net into the database as a new record

Caseset addCases Adds the cases (or a subset) in the database to a case-set object

DatabaseManager executeSql Executes arbitrary SQL commands on the database

DatabaseManager addNodes Adds to the given net nodes that match the variables in the database

High-Level Net Modification

See also “Learning from Data”

Node reverseLink Reverses a single link while maintaining joint probability

Net absorbNodes Absorbs out (sum or max) some net nodes

Node equationToTable Builds a node‟s CPT or function table based on its equation

Node switchParent Switches a link that comes from some node to come from a different

node, without changing the child node or its tables

Net duplicateNodes Duplicates each node in a list, putting them in the same or a new net

Net copy constructor Duplicates a whole net (with options to skip tables, etc.)

Net undoLastOperation Undoes the last operation done to a net

Net redoOperation Call this to re-do an operation that was undone

JAVA VERSION 4.18 NETICA API 109

Low-Level Net Modification

See also “Equations”, “Tables”, “Node-Sets” , “Visual Display” , and “User Data Fields”

Net constructor Creates a new empty net

Net finalize Frees all memory used by a net and all its substructures

Net setName Changes the name of the net

Net setAutoUpdate Changes whether a node does belief updating immediately

Net setElimOrder Provides the elimination order to be used for the next compilation

Net setTitle Sets the string used to title a net

Net setComment Attaches a comment string to the net

Net addListener Attaches a callback for when nodes get created, removed, etc.

Node constructor Creates a new node for a given net

Node delete Removes a node from its net, and frees the memory it required

Net duplicateNodes Duplicates each node in a list, putting them in same or new net

DatabaseManager addNodes Adds to a given net nodes that match the variables in the database

Node setName Changes the name of a node

Node setTitle Sets the string used to title a node

Node setComment Attaches a comment string to the node

Node setKind Changes whether the node is a nature, decision, utility, etc. node

Node setStateNames Names all the states of a node at once with a comma-delimited string

Node state().setName Provides a name for a state of the node

Node state().setTitle Sets the title of a state of the node

Node state().setComment Attaches a comment to the state of a node

Node state().setNumeric Sets a real number for a state of a discrete node

Node setLevels Sets threshold numbers for continuous / discrete conversion

Node addStates Inserts one or more states into a node‟s list of states

Node state().delete Remove a state from a node

Node reorderStates Changes the order of a node‟s states

Node addLink Adds a link from one node to another

Node deleteLink Removes a link from one node to another

Node switchParent Switches a link that comes from some node to come from a different

node, without changing the child node or its tables

Node setInputName Sets the link‟s name (to be used by the child node in its equation)

Node addListener Attaches a callback for when nodes get created, removed, etc.

Retrieving Net Information

See also “Equations”, “Tables”, “Node-Sets” “Visual Display” , and “User Data Fields”

Net getName Returns the name of the net

Net getTitle Returns the string which is the net's title

Net getComment Returns the comment associated with the net

Net getNodes Returns a list of all the nodes in a net

Net getNode Returns the node having the given name from the net

Net getFileName Name of file (with full path) that net was last written to or read from

Net getAutoUpdate Returns whether the net does belief updating immediately

Net getElimOrder Returns a list of the elimination order used for compiling

(triangulation)

Environ getNthNet Can be used to return all the nets in the Netica Environ, one-by-one

Node getNet Returns the net containing the given node

Node getName Returns the name of the given node

Node getTitle Returns the string titling the node

110 NETICA API JAVA VERSION 4.18

Node getComment Returns a comment string for the node

Node getType Returns whether the node is for a discrete or continuous variable

Node getKind Returns whether the node is a nature, decision, utility, etc. node

Node getNumStates Returns the number of states node can take on

Node state().getName Returns the name of the given state

Node state().getIndex Returns the state number of the state with the given name

Node state().getTitle Returns the title of the given state

Node state().getComment Returns the comment of the given state

Node state().getNumeric Returns the real number associated with a state of a discrete node

Node getLevels Returns threshold numbers for continuous / discrete conversion

Node getInputIndex Returns the parent index of the link with the given name

Node getParents Returns a node list of the parents of the node

Node getChildren Returns a node list of the children of the node

Node isRelated Checks if a node has a given graphical relationship (such as D-

connected, Markov blanket, ancestors, children, etc.) with another node

Node getRelatedNodes Finds all the nodes that bear a given relationship with a given node

Net getRelatedNodes Finds the nodes that bear a given relationship with a given set of nodes

Equations

Node g/setEquation Set a node‟s equation (expressing the node‟s value or CPT as a function

of its parent nodes)

Node equationToTable Builds the node‟s function or CPT table from its equation

Node g/setInputName Defines a name for a link (to be used by the node‟s equation instead of

the parent node‟s name)

Node calcState Calculates, if possible, the state of a node, based on its deterministic

equation or table, and findings at its neighbor nodes

Node calcValue Calculates, if possible, the numerical value of a node, based on its

deterministic equation or table, and findings at its neighbor nodes

Tables

Node g/setCPTable The conditional probability of the node given its parent‟s values

Node g/setExperTable Experience quantities indicating how much data was used to learn each

row of the CPTable

Node g/setStateFuncTable Function table of a discrete deterministic node

Node g/setRealFuncTable Function table of a continuous deterministic node

Node deleteTables Removes a node's function, probability, and experience tables

Node hasTable Whether the node has a CPT table or function table

Node isDeterministic Discovers if the node is a deterministic function of its parents

NodeList mapStateList Useful for getting states in correct order to access a table

Node equationToTable Builds table from equation

Learner learnCPTs Performs learning of CPT tables from data

Net reviseCPTsByFindings Modify CPTs by learning from a single case

Net reviseCPTsByCaseFile Modify CPTs by learning from cases

Node fadeCPTable Increase uncertainty in CPT table to account for passage of time

Node-Sets

Node addToNodeset Adds the given node to the node-set of the given name

Node removeFromNodeset Removes the given node from the node-set of the given name

JAVA VERSION 4.18 NETICA API 111

Node isInNodeset Returns whether the given node is a member of the given node-set

Net getAllNodesets Returns a list of all node-sets defined for this net, in priority order

Net reorderNodesets Re-orders the node-sets as requested, for priority during display

Net g/setNodesetColor Gets or sets the color used to display nodes of a given node-set

Visual Display

See also the NetPanel and NodePanel classes.

Node visual().g/setStyle The style to draw the node in Netica Application

Node visual().g/setPosition The coordinates of the center of the node in the Netica Application

User Data Fields

These are also all repeated for the Net object:

Node user().g/setNumber Attaches a named-field number to the node, that gets saved to file

Node user().g/setString Attaches a named-field string to the node, that gets saved to file

Node user().g/setObject Attaches a named-field Serializable object to the node, that gets saved

to file

Node user().g/setBytes Attaches a named-field blob to the node, that gets saved to file

Node user().removeField Removes one of the named fields of the node

Node user().getNthFieldName Retrieves field-by-field info from the node by index

Node user().g/setReference Attaches a single arbitrary data object to the node (not saved to file)

112 NETICA API JAVA VERSION 4.18

14 Index

Symbols

for state index · 37

* in case file · 37

* in UVF file · 45

? in case file · 37

[a,b] in UVF file · 43

_Bernoulli Function (eqn function) · 96

{…} in UVF file · 43, 44

~{…} in UVF file · 44, 45

~->[CASE-1]->~ · 37

+- in UVF file · 42

> in UVF file · 43, 45

A

absorbNodes() Net · 65

Access, Microsoft · 40

accuracy of net · 56

adaptive learning · 55

addCases() Caseset · 37, 40, 41

in use · 41, 57
addLink() Node · 30, 60

in use · 62, 68
addListener() Net and Node · 17

addNodes()

DatabaseManager · 41
address of Norsys · 2

addStates() Node · 60

agent modeling · 60

ancestor nodes

found by getRelatedNodes() · 79
announcement list · 13

append, passed to getRelatedNodes() · 79

approx_eq (eqn function) · 95

arc · See also „link‟

argmax0 (eqn function) · 95

argmax1 (eqn function) · 95

argmin0 (eqn function) · 96

argmin1 (eqn function) · 96

asterisk · 37

attribute-value · 37

auto-updating · 35

B

Bayes net · 6

adaptive · 55
learning · 46

Bayes net libraries · 61

Bayes net online library · 14, 27

Bayesian network · 6, 20

BBN · 20

belief · 21

belief functions · 49

belief network · 6, 20

belief updating · 21, 22, 25

functions available · 106
belief vector · 36

Bernoulli distribution (eqn function) · 96

BernoulliDist (eqn function) · 96

beta (eqn function) · 96

beta distribution (eqn function) · 96

beta function · 50

Beta4Dist (eqn function) · 96

BetaDist (eqn function) · 96

bin directory · 11

binary net files · 32

binomial (eqn function) · 96

binomial distribution (eqn function) · 96

binomial experiment · 97

BinomialDist (eqn function) · 96

BN · 20

BreastCancer.cas file · 10

BreastCancer.dne file · 10

bug report email address · 13

building Bayes nets · 20

BuildNet.java file · 10

built-in constants for equations · 92

built-in functions for equations · 92

built-in operators for equations · 92

JAVA VERSION 4.18 NETICA API 113

C

C# · 6

calcState() · 84

calcValue() · 84

case · 36

identification number · 37
case file · 36

comments · 37
creating · 36
example · 38
format · 37
uncertain findings in · 42

CASE-1 in case file · 37

cases

functions available · 107
case-set · 40

Caseset class · 40, 107

Caseset() constructor · 40

in use · 41, 57
Cauchy distribution (eqn function) · 97

CauchyDist (eqn function) · 97

causal network · 20

chance node · 67

ChestClinic example net

diagram · 23
DNET file · 31

ChestClinic.cas file · 10

ChestClinic.dne file · 10

ChestClinic_WithVisuals.dne file · 10

chi square distribution (eqn function) · 97

child nodes · 21

children, found by getRelatedNodes() · 79

ChiSquareDist (eqn function) · 97

classification · 7, 46

ClassifyData.java file · 10

clear() Node Value

in use · 35
clip (eqn function) · 97

clique tree · 22

Cobol · 6

combining nets · 60

comments · 29

compile() Net · 24

in use · 23, 38
compile.bat file · 10

compiling

functions available · 106
compiling vs. node absorption · 65

complete uncertainty in UVF file · 45

conditionals in equation · 87

confidence · 49

confusion matrix · 57

conjugate gradient descent · 49

connected nodes

found by getRelatedNodes() · 79
connecting with a database · 40

consistent findings · 35

constant node · 90

constant node as parameter in equation · 90

context node · 64

continuous variable

in case file · 39
undiscretized · 22

copyNodes() Net

in use · 62
copyright notice · 2

counting learning · 47

counting learning algorithm · 50

creation-of-node callback · 18

CSV file · 36

D

d_connected, passed to getRelatedNodes() · 79

database

connecting to · 40
extracting cases from · 40
of cases · 36

database connectivity

functions available · 108
Database Manager class · 108

DatabaseManager() constructor · 40

in use · 41
DBNs · 7

decision analysis · 7

decision net · 6, 67

solving by node absorption · 66
decision nets

functions available · 107
decision node · 67

delete() Node · 60

delete() Node State · 60

deleteLink() Node · 60

deleteTables() Node

in use · 52
deletion-of-node callback · 18

Delphi · 6

demo directory · 11

Demo program, running · 11

Demo.java file · 10

Dempster-Shafer · 49

dependence

degree of · 81
finding · 79

descendent nodes

found by getRelatedNodes() · 79
deterministic equation · 85

deterministic propagation · 84

diagnosis · 7, 46

most informative test · 82
directory structure of distro · 11

Dirichlet distribution · 50

Dirichlet distribution (eqn function) · 100

disclaimer · 2

disconnected link · 62

discretization

avoiding · 84
DiscUniformDist (eqn function) · 97

display of nodes · 61

DNET file

format · 14
DNET file · 27, 31

114 NETICA API JAVA VERSION 4.18

DNET_File_Format.txt file · 14

docs directory · 11

DoInference.java example program · 23

DoInference.java file · 10

double exponential (eqn function) · 99

Drawing Balls example · 49

drawing nodes and nets · 72

DrawNet.java example program · 72

DrawNet.java file · 10

duplicate() · 62

duplication-of-node callback · 18

dynamic Bayes nets · 7

E

Eclipse development system · 12

efficiency · 22

elimination order · 22

EM learning · 54

algorithm · 49
when to use · 47

EM_LEARNING

in use · 54
email address · 6

embedded systems · 7

encrypting Bayes net · 32

entering findings · 35

enterLikelihood() Node Value

in use · 35
enterState() Node Value · 25

in use · 23, 35
enterStateNot() Node Value

in use · 35
Environ class · 105

Environ() constructor · 9, 24

in use · 23
eqnear (eqn function) · 97

equation · 84

built-in constants · 92
built-in functions · 92
built-in operators · 92
comparison with Java/C · 86
conditional statements · 87
constant node as parameter · 90
deterministic · 85
examples · 84, 91
input names · 89
left-hand side · 85
link names · 89
probabilistic · 85
referring to discrete states · 89
right-hand side · 86
syntax · 85
tips · 90
using to build table · 88

equations

functions available · 110
equationToTable() · 84, 88

erf (eqn function) · 97

erfc (eqn function) · 97

error handling

functions available · 105
error rate · 57

ERROR_ERR · 18

ess · 50

estimated sample size · 50

event handling · 17

evidence · See also „findings‟

functions available · 106
example Bayes nets · 27

example DNET file · 31

example program

building decision net · 68
displaying a Bayes net graphically · 72
DoInference.java · 23
DrawNet.java · 72
entering findings · 35
LearnCPTs.java · 52
learning probabilities · 52
MakeDecision.java · 68
NetTester.java · 57
node library · 62
probabilistic inference · 22
SimulateCases.java · 38
solving decision problem · 68

examples directory · 11

exception handling · 18

exclude_self, passed to getRelatedNodes() · 79

executeSQL() DatabaseManager · 41

exhaustive · 29

experience · 50

explaining away · 25

exponential distribution (eqn function) · 97

ExponentialDist (eqn function) · 97

extreme value distribution (eqn function) · 98

ExtremeValueDist (eqn function) · 98

F

factorial (eqn function) · 98

fadeCPTable() Node · 55

fading · 55

FDist (eqn function) · 98

F-distribution (eqn function) · 98

feature list · 7

file format

case file · 37
DNE Bayes net · 14

file operations

functions available · 105
files provided in distro · 10

finalize() · 19

finalize() Caseset · 40

finalize() Environ

in use · 23
finalize() Net

in use · 23, 38, 68
finalize() Sensitivity · 82

finalizers · 19

finding · 21

consistency · 35
entering · 35

JAVA VERSION 4.18 NETICA API 115

likelihood · 34
negative · 34
positive · 34
sets of · 36
soft · 34

findings node · 64

FIRST_CASE

in use · 52
Fisher-Snedecor distribution (eqn function) · 98

Fisher-Tippet distribution (eqn function) · 98

Flow Instrument example · 61

for n/N conditions, no … warning message · 87

formula · 84

Fortran · 6

forward sampling · 22

F-ratio distribution (eqn function) · 98

frequency of cases · 37

functionality · 7

fuzzy logic · 49

G

gamma (eqn function) · 98

gamma distribution (eqn function) · 98

GammaDist (eqn function) · 98

Gaussian in UVF file · 42

generateRandomCase() Net · 22, 83, 84

in use · 38
geometric distribution (eqn function) · 98

GeometricDist (eqn function) · 98

getBelief() Node · 25

in use · 23
getBeliefs() Node

in use · 35
getBytes() User · 80

getConfusion() NetTester · 57

in use · 57
getErrorRate() NetTester · 57

in use · 57
getExpectedUtils() Node · 70

in use · 68
getInputIndex() Node

in use · 63
getLikelihood() Node Value

in use · 35
getLogLoss() NetTester · 57

in use · 57
getMutualInfo() Sensitivity · 82

getNodes() Net

in use · 38, 52
getNthFieldName() User · 80, 81

getNumber() User · 80

getObject() User · 80

getQuadraticLoss() NetTester · 57

getReference() User · 80

getRelatedNodes() for a group of nodes · 80

getRelatedNodes() Node · 79

getState() Node Value · 36

in use · 35
getStateFuncTable() Node · 70

in use · 68

getString() User · 80

getVarianceOfReal() Sensitivity · 82

gradient descent learning

algorithm · 49
when to use · 47

graph algorithms · 79

graphical model · 6, 20

graphical user interface · 6

H

Hugin · 12

hypergeometric distribution (eqn function) · 99

HypergeometricDist (eqn function) · 99

I

IDE installation · 12

ideas for improvement · 13

IDname · 29

IDnum · 37

ignorance · 49

include_evidence_nodes, passed to getRelatedNodes() · 79

increasing (eqn function) · 99

increasing_eq (eqn function) · 99

independence

degree of · 81
finding · 79

independent finding · 34

inference

functions available · 106
influence diagram · 6, 67

influence, degree of · 81

inheriting from Node or Net · 16

input names in equation · 89

input/output done by Netica API · 7

insertFindings() DatabaseManager · 41

installing Netica-J · 11

Instrument example · 61

intersection, passed to getRelatedNodes() · 79

interval in UVF file · 43

isRelated() Node · 80

J

Java · 6

Java version required · 11

javadocs · 10, 12

join tree ·

junction tree · 22

versus node absorption · 22

K

knowledge base · 20

116 NETICA API JAVA VERSION 4.18

L

Laplace distribution (eqn function) · 99

LaplaceDist (eqn function) · 99

large nets

too big to compile · 22
latent variable · 47

layout of nodes · 61

learnCPTs() Learner · 54

in use · 41, 54
LearnCPTs.java example program · 52

LearnCPTs.java file · 10

Learner class · 107

Learner() constructor · 54

in use · 41
learning

adaptive · 55
Bayes nets · 46
from cases · 46
parameter · 46
structure · 46

learning algorithms · 47

learning from data

functions available · 107
learning nodes · 47

LearnLatent.cas file · 10

LearnLatent.java file · 10

left-hand side of equation · 85

legal disclaimer · 2

libNeticaJ.jnilib · 10

libNeticaJ.so · 10

libraries

Bayes net · 20, 61
node · 61

license agreement · 9

License Agreement.pdf file · 9, 10

license for other languages · 9

license password · 9

likelihood

in case file · 47
in UVF file · 44

likelihood finding · 34, See also „soft finding‟

not independent · 35
likelihood vector · 35

link

adding · 30
link name · 62

in equation · 89
links · 21

Linux · 7

Lisp · 6

lists of nodes · 77

log likelihood during learning · 48

logarithmic distribution (eqn function) · 99

logarithmic loss · 57

logarithmic series distribution (eqn function) · 99

LogarithmicDist (eqn function) · 99

logfactorial (eqn function) · 99

loggamma (eqn function) · 99

lognormal distribution (eqn function) · 99

LognormalDist (eqn function) · 99

log-Weibull distribution (eqn function) · 98

M

Macintosh · 7

MakeDecision.java example program · 68

MakeDecision.java file · 10

markov blanket · 79

markov_blanket, passed to getRelatedNodes() · 79

Matlab · 6

max (eqn function) · 100

maximizing expected utility · 67

maximum likelihood learning · 48

medical domain · 20, 22

member (eqn function) · 100

memory required · 22

min (eqn function) · 100

missing data · 37, 47, 50

missing state, reading case · 37

modeling agents · 60

modifying nets · 60

most informative test · 82

MS Access · 40

MS SQL Server · 40

MS Windows · 7

multinomial (eqn function) · 100

multinomial distribution (eqn function) · 100

MultinomialDist (eqn function) · 100

multiplicity of cases · 37

multithreading · 7, 17

mutual information · 82

mutually exclusive · 29

MySQL database · 40

N

NAME_MAX General · 29

names · 29

native objects and code · 17

nature node · 67

nearest0 (eqn function) · 100

nearest1 (eqn function) · 100

negative binomial distribution (eqn function) · 101

negative finding · 34

negative likelihood in UVF file · 45

NegBinomialDist (eqn function) · 101

Net class · 106, 108, 109

net library · 14

net reduction · 64

Net() constructor · 24, 29

for new library · 62
in use · 23, 62, 68
in use to read file · 63

Net.java file · 10

NETA file format · 32

NetEx.java file · 10, 16

Netica API · 6

Netica Application · 6, 14, 27

transferring info · 81
website · 14

Netica.dll · 10

NeticaError class · 105

NeticaEx · 15

JAVA VERSION 4.18 NETICA API 117

NeticaException class · 18

Netica-J · 6

NeticaJ.dll · 10

NeticaJ.jar · 10

NeticaJ_Man.pdf file · 10

NetPanel() constructor

in use · 72
NetTester class · 108

NetTester() constructor · 56

in use · 57
NetTester.java example program · 57

NetViewer.java file · 10

neural networks · 49

NEXT_CASE

in use · 52
NO_MORE_CASES

in use · 52
node · 21

node absorption · 64, 65

Node class · 109, 110

node library

example program · 62
node library · 61

node lists · 77

functions available · 107
Node() constructor · 29, 60

in use · 62, 68
Node.java file · 10

setPosition() Node VisualNode · 61

setStyle() Node VisualNode · 61

NodeEx.java file · 10

NodeEx.java file · 16

NodeList class · 107

Nodelist.java file · 10

NodeListEx.java file · 10, 16

NodePanel class · 72

node-set functions · 110

node-sets

functions available · 110
noisy-and distribution (eqn function) · 101

NoisyAndDist (eqn function) · 101

noisy-max distribution (eqn function) · 101

NoisyMaxDist (eqn function) · 101

noisy-or distribution (eqn function) · 101

NoisyOrDist (eqn function) · 101

noisy-sum distribution (eqn function) · 101

NoisySumDist (eqn function) · 101

normal distribution (eqn function) · 102

NormalDist (eqn function) · 102

Norsys address · 2

NumCases column in case file · 37

O

old versions of Netica-J · 11

optimal decisions · 67

Oracle database · 40

other state, reading case · 37

P

parameter learning · 46

parent nodes · 21

parents, found by getRelatedNodes() · 79

Pareto distribution (eqn function) · 102

ParetoDist (eqn function) · 102

Pascal · 6

performance testing · 56

performance testing a net

functions available · 108
Perl · 6

platforms · 7

Poisson distribution (eqn function) · 102

Poisson process · 98

PoissonDist (eqn function) · 102

positive finding · 34

posterior probabilities · 21

prediction · 7, 46

preference utilities · 61

preprocessing input data · 84

printConfusionMatrix()

in use · 57
prior probabilities · 21

probabilistic causal models · 6

probabilistic causal network · 20

probabilistic equation · 85

probabilistic inference · 21

by node absorption · 65
example program · 22

probability as a measure of uncertainty · 49

probability revision · 21

Prolog · 6

Q

quadratic loss · 57

quality assurance · 7

question, finding best · 82

questions email address · 13

R

random case generation · 83

readFindings() Net · 42

in use · 52
reduction in entropy · 82

referring to discrete states in equation · 89

regression testing · 7

relations (structural) between nodes · 80

removal-of-node callback · 18

removeField() User · 80

reorderStates() Node · 60

resources for Netica · 14

retractFindings() Net

in use · 38, 52
reverseLink() Node · 65

reviseCPTsByCaseFile() Net · 51

in use · 52

118 NETICA API JAVA VERSION 4.18

reviseCPTsByFindings() Net · 51, 52

right-hand side of equation · 86

risk analysis · 7

round (eqn function) · 102

roundto (eqn function) · 102

run.bat file · 10

S

sampling · 22

second order probabilities · 50

select0 (eqn function) · 102

select1 (eqn function) · 102

Sensitivity class · 108

Sensitivity document · 83

sensitivity to findings · 81

functions available · 108
Sensitivity() constructor · 82

sensor fusion · 7

set of cases · 40

set of impossibilities in UVF file · 44

set of possibilities in UVF file · 43

setBytes() User · 80

setConstructorClass() Net and Node · 16

setCPTable() Node · 30

in use · 68
setCPTable() NodeEx · 30

setExperTable() Node · 50

setKind() Node · 60, 90

in use · 68
setMaxIterations() Learner · 54

setMaxTolerance() Learner · 54

in use · 54
setNumber() User · 80

setObject() User · 80

setPassword() Streamer · 32

setRealFuncTable() Node

in use · 68
setReference() User · 80

sets of findings

functions available · 107
sets of nodes · 77

setStateNames() Node · 30

in use · 68
setString() User · 80

sign (eqn function) · 103

SimulateCases.java example program · 38

SimulateCases.java file · 10

simulation · 83

single distribution (eqn function) · 103

SingleDist (eqn function) · 103

Snedecor distribution (eqn function) · 98

soft finding · 34, See also „likelihood finding‟

in case file · 47
spreadsheet program · 36

SQL Server, MS database · 40

src directory · 11

src/neticaEx/aliases/ directory · 18

standard normal (eqn function) · 102

state name · 37

statistics of net · 56

stopping criterion for learning · 48

Streamer class · 105

structural relations between nodes · 80

structure learning · 46

student-t distribution (eqn function) · 103

StudentTDist (eqn function) · 103

style of nodes · 61

subtract, passed to getRelatedNodes() · 79

support email address · 13

switchParent() Node · 62

in use · 63
system

functions available · 105

T

tab-delimited text file · 36

table too big · 88

tables

functions available · 110
target node · 46, 64, 82

target node, sensitivity · 82

templates · 20

termination condition for learning · 48

test cases · 56

test data · See also „test cases‟

test nodes · 56

test, finding best · 82

testing performance of net · 56

TestNet.java file · 10

testWithCaseset() NetTester · 56

in use · 57
threadsafe · 7

titles · 29

trademark notices · 2

training cases · 46, 56

training data · See also „training cases‟

triangular distribution (eqn function) · 103

Triangular3Dist (eqn function) · 103

TriangularDist (eqn function) · 103

TriangularEnd3Dist (eqn function) · 103

U

Umbrella example · 67

unbounded interval in UVF file · 43, 45

uncertain findings in case file · 42

uncertainty · 49

Unicode · 29

uniform distribution (eqn function) · 97, 103

UniformDist (eqn function) · 103

union, passed to getRelatedNodes() · 79

unobserved nodes · 56

upgrades website · 13

upgrading Netica API · 9

user class · 80

User class · 111

user data fields

functions available · 111
user-defined data · 80

user-defined fields · 80

JAVA VERSION 4.18 NETICA API 119

UTF-16 · 29

utility node · 67

UVF file · 42

complete uncertainty · 45
Gaussian · 42
interval · 43
likelihood · 44
negative likelihood · 45
set of impossibilities · 44
set of possibilities · 43
unbounded interval · 43, 45

V

Value class · 106

value node · 67

value of information, utility-free

functions available · 108
variable · 21

variance due to findings · 82

variance-ratio distribution (eqn function) · 98

varying node · 82

version number of license · 9

virtual evidence · See also „soft finding‟

Visual Basic · 6

visual display

functions available · 111
VisualNode class · 111

W

WARNING_ERR · 18

Weather example · 61

Weibull distribution (eqn function) · 103

WeibullDist (eqn function) · 103

wild state, reading case · 37

Windows · 7

working with findings

functions available · 106
write() Net · 31, 32

in use · 62
writeCases() Caseset · 40

writeFindings() Net

in use · 38

X

xor (eqn function) · 103

