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1 Introduction 
This reference manual is for Netica-J, the Java version of the Netica API Programmer’s Library.  It is 
meant to be used in conjunction with the onscreen Netica-J javadocs reference (see below).  Netica-J is a 
set of Java classes and an accompanying Java Native Interface (JNI) library that allow a Java developer to 
use the Netica API Programmer’s Library for working with Bayesian networks. 

This manual is not a manual for Netica Application, which is an easy to use point-and-click application 
program with much of the same functionality (see http://www.norsys.com/netica.html).  Users of the API 
will typically want to have the Application handy for visually inspecting and modifying nets.  A version 
of Netica soon to be released will allow Netica API to use the GUI of Netica Application. 

Besides Java, other versions of Netica API exist for C/C++, C# and Visual Basic each offering the full 
Netica functionality. Visit http://www.norsys.com/netica_api.html to learn more about the other members 
of the Netica API family, and to obtain their documentation.  The C version can be used by programs 
written in any language which can call C functions, such as C++, Python, Perl, Prolog, Lisp, Matlab, 
Delphi Pascal, Fortran or Cobol).  Interface files for some of these languages, developed by the Netica 
community, are available from Norsys.  Matlab is supported through this, the Java API. 

This manual assumes that you are familiar with the Java programming language.  It also assumes 
familiarity with Bayesian networks or influence diagrams, although it has a little introductory material, 
especially on issues that are new or generally not well understood.  Questions and comments about 
material in this manual may be sent to:  netica-j@norsys.com. 

1.1 Netica-Java API 

The Netica-J API is a complete library of Java classes for working with Bayesian networks (also known 
as Bayes nets, belief networks, graphical models or probabilistic causal models) and influence diagrams 
(also known as decision networks).  It contains functions to build, learn from data, modify, transform, 
performance-test, save and read nets, as well as a powerful inference engine.  It can manage “cases” and 
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sets of cases, and can connect directly with most database software.  Bayes nets can be used for diagnosis, 
prediction, classification, sensor fusion, risk analysis, decision analysis, combining uncertain information 
and numerous probabilistic inference tasks. 

Programs that use Netica-J completely control it.  For example, Netica functions will not take any action 
until called, Netica will not do any I/O unless requested to, and its functions will not take an unpredictable 
amount of time or memory before returning.  Netica-J is threadsafe in multi-threaded environments.  It 
may be used in conjunction with other Java or JNI C libraries and it won't interfere with them. 

Versions of Netica-J are available for MS Windows, Linux, and Macintosh (and for many other platforms 
from cell phones to mainframes - contact us for info), and each of these has an identical interface, so you 
can move your code between these platforms without changing anything to do with the Netica API.  For 
the latest versions for the more common platforms, visit http://www.norsys.com/download_api.html  

Before releasing any new version of the Netica API, every function is put through rigorous quality 
assurance testing to make sure it operates as designed. Hundreds of real nets and millions of random nets 
are generated and solved in multiple ways to check the inference results.  This level of QA, combined 
with a careful initial design and over ten years of extensive customer usage, has resulted in a rock-solid 
product. 

The Netica API has been designed to be easily extended in the future without changing what already 
exists.  Many new features are currently under development, and it will continue to be extended for years 
to come. 

Netica API features: 

• Dynamic Construction:  Can build and modify networks "on the fly" in memory (to support working 
with dynamic Bayes nets), and can save/read them to file. 

• Equations:  Probability tables may be conveniently expressed by equations, using a Java/C type syntax 
and taking advantage of an extensive library of built-in functions, including all the standard math 
functions and common probability distributions, as well as some functions and distributions 
specially suited to Bayes nets, such as noisy-or, noisy-max, noisy-sum, etc. 

• Learning from Data:  Probabilistic relations can be learned from case data, even while the net is being 
used for probabilistic inference. Learning from data can be combined with manual construction of 
tables and representation by equations. It can handle missing data and latent variables or hidden 
nodes. Learning algorithms include: counting, sequential updating, fractional updating, EM 
(expectation maximization), and gradient descent. 

• Database Connectivity:  Allows direct connection to most database software. 

• Threadsafe:  Can be used safely in multi-threaded environments. 

• Encryption:  Can save and read nets to file in encrypted form, which allows deploying solutions relying 
on Bayes nets kept private to an organization. 
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• Sensitivity:  Netica can efficiently measure the degree to which findings at any node can influence the 
beliefs at another node, given the findings currently entered. The measures can be in the form of 
mutual information (entropy reduction), or the expected reduction of real variance. 

• Advanced Decision Nets:  Can solve influence diagrams which have multiple utility and decision 
nodes to find optimal decisions and conditional plans, using a junction tree algorithm for speed.  
Handles multi-stage decision problems, where later decisions depend on the outcomes of earlier 
ones, and on observations not initially known.  No-forgetting links need not be explicitly specified. 

• Junction Tree Algorithm:  Can compile Bayes nets and influence diagrams into a junction tree of 
cliques for fast probabilistic inference. An elimination order can be specified or Netica can 
determine one automatically, and Netica can report on the resulting junction tree. 

• Soft Evidence:  Accepts likelihood findings (i.e., “virtual evidence”), findings of the form that some 
variable is not is some state, Gaussian findings, and interval findings, as well as regular real-
valued or state findings. 

• Link Reversal:  Can reverse specified links or "sum out" (absorb) nodes of a Bayes net or influence 
diagram while maintaining the same overall joint probability distribution, properly accounting for 
any findings in the removed nodes or other nodes. 

• Disconnected Links:  Links may be individually named and disconnected from parent or child nodes, 
thus making possible libraries of network fragments (which you may then copy and connect to 
other networks or node configurations). 

• Case Support:  Can save individual cases (i.e. sets of findings) to file, and manipulate files of cases.  
Works with the UVF file format, which allows cases to be incomplete or have uncertain values 
(Gaussian, interval, sets of possibilities, sets of impossibilities, etc.),  and associates an ID number 
and multiplicity with each case. 

• Simulation:  Can do sampling (i.e. stochastic simulation) to generate random cases with a probability 
distribution matching the Bayes net.  Can use a junction tree algorithm for speed, or do direct 
sampling for nets too large to generate CPTs or a junction tree. 

• User Data:  Every node and network can store by name arbitrary data fields defined by you. They may 
contain numbers, strings, byte data, etc., and are saved to file when the object in question is being 
saved.  As well, there are fields not saved to file, which can contain a pointer to anything you 
wish. 

• Error Handling:  Has a simple but powerful method for handling usage errors, which can generate very 
detailed error messages if desired. 

• Argument Checking:  Allows programmers to control how carefully API functions check their 
arguments when they are called, including a “development mode” to extensively check everything 
passed to an API function. 

• Compatibility:  Can work hand-in-hand with the Netica Application standalone product (for example, 
sharing the same files), and with Netica API versions for other languages. 

• Efficient:  Is optimized for speed, and is not too large (2 MB typical). 

• Many Platforms:  Is available for a wide range of platforms including MS Windows (95/NT to Vista), 
Linux, Macintosh, AIX, etc.  Contact Norsys for other platforms. 
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• Memory Limiting:  You can set a bound on how much total heap space Netica-J API is allowed to 
allocate for large tables, thereby preventing virtual memory thrashing or the memory-starving of 
other parts of your application. 

• Java Oriented Features:   
• Clean object-oriented design 
• Comprehensive javadocs and manual 
• Sample java source applications to get you started 
• Uses Java's exception handling mechanism in the natural way 
• Supports event listening by any Java object for events such as the creation, 

deletion, duplication, etc. of Nets or Nodes 
• Supports user data fields for any Serializable Java object 
• Supports standard Java I/O streams 
• Supplies graphical visualization of Bayes nets with AWT/SWING classes 

• More Features:  A more extensive list of features is available from:  
http://www.norsys.com/netica_api.html 

 

1.2 License Agreement and Password 

Before using Netica API, make sure you accept the license agreement that is included in this package as 
the file  License Agreement.pdf.   

If you have purchased a license to use Netica API, you will have received a license password by email, on 
the invoice, and/or on the shipped disk. You pass the license password to the Environ constructor.  For 
example: 

Environ env = new Environ("your unique license"); 

If you do not have a license password, then you can simply supply  null in place of it, in which case 
Netica-J API will be fully functional, but limited in problem size (e.g. size of nets, size of data sets). 

The license password you have purchased also licenses you to use versions of Netica API for other 
languages, such as the C version (Netica-C), the C# or Visual Basic version, or the C++ version.  Simply 
supply that license string to the appropriate Environment constructor in those languages.  The same rights 
and obligations granted by the API license apply to all the language versions. 

If your license password enables Netica API, it will have a “310-” within it.  The digit immediately 
following that is the version number of the license.  It must be at least 3 to fully enable this version (3.xx) 
of Netica API.  If it is less, then after you call new Environ(), a warning message will be available for 
viewing if you call NeticaError.getWarnings(), and Netica API will continue operation in limited 
mode.  To upgrade your license, contact Norsys, or see:  https://www.norsys.com/order_v3_upgrade.htm. 
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1.3 Files Included 

The following files are included in the distribution of Netica-J, the Java version of Netica API: 
 

Directory File Description   

docs • NeticaJ_Man.pdf 
• javadocs/ 
• License Agreement.pdf 

• this file 
• the javadocs directory for Netica-J 
• a legal document relating to the use of Netica API 
 

bin • NeticaJ.jar 
• NeticaJ.dll  
  (libNeticaJ.so) 
  (libNeticaJ.jnilib) 
• Netica.dll  
  (libnetica.a) 

• the Java class library that defines Netica-J 
• the Java-to-Native interface library (Windows only) 
           “             “              “                 (Unix/Linux only)  
           “             “              “                 (MacOSX only) 
• the native Netica API library (Windows only)  
           “             “              “       (MacOSX only) 
 

src/neticaEx/ • NetEx.java 
• NodeEx.java 
• NodeListEx.java 

• A class containing useful Net methods 
•                     “              “    Node         “ 
•                     “              “    NodeList   “  
 

src/neticaEx/ 
aliases 

• Net.java 
• Node.java 
• NodeList.java 

• A convenience class that renames NodeEx       as Node 
•                     “              “            “    NetEx          as Net 
•                     “              “            “    NodeListEx as NodeList 
 

demo • Demo.java  
• compile.bat (.sh) 
 
• run.bat (.sh) 

• a sample application to test your Netica-J installation 
• a sample batch file for compiling Demo.java  
   (.bat for Windows, .sh for Unix/Linux/MacOSX) 
• a sample batch file for running Demo.class  
   (.bat for Windows, .sh for Unix/Linux/MacOSX) 

examples 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/ 
Data Files 

• BuildNet.java 
• DoInference.java 
• SimulateCases.java 
• LearnCPTs.java 
• LearnLatent.java 
• ClassifyData.java 
• MakeDecision.java 
• DrawNet.java 
• NetViewer.java 
• TestNet.java 
• compile.bat (.sh) 
• run.bat (.sh) 
 
• ChestClinic.dne 
• BreastCancer.dne 
• ChestClinic.cas 
•ChestClinic_WithVisuals.dne 
• LearnLatent.cas 
• BreastCancer.cas 

• demonstrates building a Bayes net from scratch 
• demonstrates doing inference 
• demonstrates creating case instances that statistically derive from a given net 
• demonstrates learning from cases 
• demonstrates EM Learning 
• demonstrates Naive Bayesian Classification of real-world medical data 
• demonstrates building a decision net and choose an optimal decision with it 
• demonstrates use of the gui package for drawing nets 
• demonstrates use of the gui package for editing nets and their findings 
• demonstrates testing the performance of a learned net with the net tester tool 
• a sample batch file for compiling all the java files in this directory 
• a sample batch file for running all the java programs in this directory, after 
they have been compiled 
• an example net file required by SimulateCases/LearnCPTs/TestNet.java 
• an example net file required by ClassifyData.java 
• a case file created by SimulateCases.java and required by TestNet.java 
• ChestClinic.dne but including all the size/position/color display information 
• a case file required by LearnLatent.java 
• a case file required by ClassifyData.java 
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The Netica-J directory structure 
 
The docs/ directory contains manuals, javadocs, license agreements, and any other documentation. 
The bin/ directory contains the Netica-J runtime software without which Netica-J will not function. 
The src/ directory contains source software that is distributed with Netica-J.  You are free to examine, compile, or 
copy from these source files.  We suggest that you leave the original files unmodified.  These functions may change 
in future version of Netica. 
The demo/ directory contains a simple program that should be compiled and run after installation to establish that 
your Netica-J system is correctly installed and ready to use. 
The examples/ directory contains assorted sample data and source code that you may examine, copy, and edit freely. 

1.4  Getting Started 
 

Recommended Installation steps: 

1. A Java-2 platform is required.  There are many suppliers, for example SUN Microsystems at 
http://java.sun.com/products/.  Version 3.25 was constructed using Java 1.4.2 and should be 
compatible with any 1.4 and higher platform. 

2. Download Netica-J from the Norsys website:   http://www.norsys.com/netica-j.html (older 
versions can be found at http://www.norsys.com/downloads/old_versions).  Choose a version 
that matches your OS/platform. 

3. Unzip it, and it will form a directory called NeticaJ_325 (or the current version number). 

4. Test your installation with the Demo application provided: 

a) Change to the demo/ directory and at the command line, type:  compile.bat 
(compile.sh on Unix/Linux/MacOSX).   Or click on the compile.bat icon.  This will 
compile Demo.java and create Demo.class. 

b) At the command line, type:  run.bat (run.sh).  Or click on the run.bat icon.  This 
will run Demo.class. 

c) If it displays a welcome message, and does simple probabilistic inference without 
declaring any errors, then your installation was successful. 

5. Now that you have the example program running, you can duplicate the demo/ directory, 
replace Demo.java with your own source files, and you are ready to build your own 
application.  Don't forget to replace "null" in "new Environ(null)" with your own 
license password, if you want to have the full functionality of Netica. 
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6. Demo.java, is a good starting point for developing your own applications.  You may wish to 
"cut-and-paste" from it.  Similar examples showing how to build a net from scratch, do 
inference, generate cases, and learn from cases are provided in the examples/ directory. 

7. If you are familiar with the Hugin or JavaBayes systems and would like information on 
equivalent Netica functions, contact Norsys. 

1.4 Complete Javadocs Reference 

For javadocs-style documentation for Netica-J, simply point your browser at the index.html file in the 
docs/javadocs/ directory.  The javadocs very thoroughly document every class and every function of the 
Netica API.  You will find it an invaluable companion during development. 

1.5 IDE Installation 
 

Using Java IDEs (Eclipse, JBuilder, NetBeans, JDeveloper, Forte, etc.) 
 
You must inform your IDE of the locations of the three library files:  NeticaJ.dll (libNeticaJ.so), 
NeticaJ.jar, and Netica.dll (libnetica.a).   Assuming Netica-J was installed at the following location 
on your filesystem: 

Windows:        C:\NeticaJ_325         
Unix/Linux/MacOSX:    /home/NeticaJ_325 

 
1) NeticaJ.dll(libNeticaJ.so/.jnilib) must appear on the java library path.  Typically this is done  
       with a -D option to the JVM.  For example:   

Windows:     java -Djava.library.path=C:\NeticaJ_325\bin 

Unix/Linux/MacOSX:   java -Djava.library.path=/home/NeticaJ_325/bin 
 

2) NeticaJ.jar  must appear on the java CLASSPATH. For example:   
Windows:     java -classpath C:\NeticaJ_325\bin\NeticaJ.jar 

Unix/Linux/MacOSX:   java -classpath /home/NeticaJ_325/bin/NeticaJ.jar  
 

3) Windows Only: Netica.dll must appear on the Windows execution "path, so that Windows can find it.  
For example: 

Windows:    set PATH=C:\NeticaJ_325\bin;%PATH%  
 

Eclipse instructions: 
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1. Create your Java project as usual 

2. In the "Project Properties" dialog, choose the "Java Build Path" link, then click on the "Libraries¨ tab, 
and then click on the "Add External Jars" link.  Navigate to the C:\NeticaJ_325\bin directory and select 
NeticaJ.jar 

3. In the "Run As" dialog, go to the "Arguments" tab and in the "VM Arguments" window create the 
following argument: -Djava.library.path=C:\NeticaJ_325\bin  

4. Windows Only: Still in the "Run As" dialog, go to the "Environment" tab and create a new "PATH" 
variable with value:  C:\NeticaJ_325\bin;%PATH% 

 

1.6 Upgrades, Support and Mailing List 

New versions of Netica API are available for download from the Norsys website (from the “Downloads” 
menu at www.norsys.com).  If you are using a license password, it will work with any version released 
within a year of the password being issued (and often longer). 

If you would like to be notified of version updates and other news regarding Netica-J, please visit 
https://www.norsys.com/mailing_list.html?interests=Netica-J and supply us with your e-mail address. 
Mailings are infrequent, and your privacy will be respected. 

We at Norsys have worked hard to make Netica-J a very high quality and robust package that is easy and 
natural to use.  If you have any ideas for how it can be improved, we would be very happy to hear them.  
Please send your suggestions to:   netica-j@norsys.com 
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1.7 Other Resources 

The following resources at the Norsys website may be helpful when using Netica API: 

Netica Application - This program has an easy-to-use graphical interface, and most developers 
working with Netica API use it to visualize and/or edit the Bayes nets they are working with.  It 
is also useful for experimentation, and trying out concepts that are to be implemented using 
Netica API, since it operates in much the same way. 

 Website location:   http://www.norsys.com/netica.html 

Resources Page - Describes training, consulting, literature and websites available for Netica.   

 Website location:   http://www.norsys.com/resources.htm 

Bayes Net Library - A website containing many example Netica files that are ready to download into 
Netica (Application or API).  They are Bayes nets and decision nets that have become classics in 
the literature, or are contributed by other Netica users.  This is a good place to look for 
inspiration and ideas. 

 Website location:   http://www.norsys.com/net_library.htm 

DNET File Format - Describes the file format for Netica DNET (also known as DNE) files. 

 Website location:   http://www.norsys.com/dl/DNET_File_Format.txt 
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2 Netica-J Package Design and Usage 
This section outlines programming principles and issues as they relate to Netica-J's operation and 
organization.  If you are an experienced Java developer or you are planning a sizeable development effort 
with Netica-J, you will definitely want to read and understand this section before beginning your 
development. 

2.1 The “Ex” classes NetEx, NodeEx, and NodeListEx 

The “Ex” classes inherit from their parent class (NodeEx extends Node, NetEx extends Net, etc). 

They are built on top of the core Netica system to provide convenience of use (the “Ex” stands for 
“Extra”, “Example”, “External”, “Experimental”, and “Excellent!”).  These are utilities and shortcuts that 
were deemed useful, but not basic enough to belong in the base class.  Some of them are “Ex” methods 
because they are more useful in source code form, so that you can customize them to your needs. 

Because their Java source is included, the “Ex” classes are a good place to look for coding examples. 
Indeed, many of the coding examples found in the javadocs are taken from the “Ex” classes. 

Unlike the core Netica system, the “Ex” classes may change in future versions; methods may be added, 
removed or modified.  For this reason, you may want to keep copies of the Ex classes for future reference, 
or you may want to copy out any methods you need to form your own extensions of the parent classes. 

Since the “Ex” classes contain so many useful methods, many users will want to use the “Ex” classes in 
place of the more basic parent classes.  See Section 3, Inheritance, below, for considerations when doing 
this. 

The “Ex” classes are in part supported by the Netica-J user community, so please feel welcome to submit 
additional methods that you have found useful, or to suggest improvements to the ones already there. 
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Some of the “Ex” class methods are static, while others are not.  The basic criterion of choosing to make a 
method static was whether that method could be thought of as a “standalone-utility” that would be useful 
to have around even when you didn’t have an “Ex” object present.  Since none of the “Ex” classes define 
new state data, it is a trivial exercise to convert a static method to be non-static or vice versa, should you 
prefer the alternate. 

Because the “Ex” classes are so useful, many developers will want to use them directly.  To make this 
easy, their compiled classes have been included in the NeticaJ.jar distribution.  All you need do is   
import norsys.neticaEx.*; and you are ready to use them without the need to compile your 
own versions of them. 

Finally, as a convenience, we also supply in the norsys.neticaEx.aliases package, three wrapper classes 
for NetEx, NodeEx, and NodeListEx, that are named Net, Node, and NodeList, respectively.  They allow 
you to use the base class names and still use the Ex classes.  See demo/Demo.java and 
examples/BuildNet.java for examples of how to use these convenience classes. 

2.2 Java Objects and Native Object Peers 

Since Netica-J is a JNI API, many of the Java objects created are “proxies” of their native or “peer” 
counterpart objects internal to the core Netica binary.  This is true of Environ, Net, Node, NetTester, 
NeticaError, Sensitivity, and Streamer.  The remaining Java classes (General, NeticaEvent, 
NeticaException, NeticaListener, NodeList, State, User, Util, Value, and VisualNode) do not have peer 
equivalents. 

The existence of peer relationships is usually transparent to the Java developer.  Netica-J was designed to 
give the developer as much as possible the sense he/she is working in a 100% pure Java environment. 

The only situations where you need to know about peer objects is when considering finalization and the 
cleanup of native resources (discussed in the Finalizers section, below), or when working in a model-
view-controller (MVC) environment where things could be happening to the native model objects, and 
the Java environment is presenting but one view on that model.  This can happen, for instance, if Netica-J 
is communicating with peer objects inside Netica Application.  A user of Netica Application could delete 
a native node via the GUI, and the Java environment would then find that its Node object had been 
disconnected from its peer.  Netica-J has a standard Java Publish-and-Subscribe mechanism (using 
NeticaEventListeners) for Java objects to be made aware of such occurrences on the native side of the 
universe (see the Event Handling section, below). 

  



16    NETICA  API   JAVA  VERSION  3.25 

2.3 Exception Handling 

Exception handling in Netica-J works in the normal Java way.  If a method encounters an unexpected 
situation that it cannot resolve, a NeticaException is thrown.  The vast majority of Netica-J methods are 
able to throw a NeticaException.  The toString() method of NeticaException details the reason for the 
Exception.  Hence, your typical try-catch block will look something like this: 

try {  
// call Netica-J methods 

} 
catch (NeticaException e) { 

e.printStackTrace(); 
} 

If you are familiar with the Netica C API, you will find that Netica-J’s exception handling mechanism 
makes coding much more convenient and straightforward, since you no longer need to actively check if 
an error has occurred.  Netica-J looks after that for you, and will throw a NeticaException automatically if 
any “serious” (“show stopper”) error occurs.  By “serious” we mean any errors of severity level 
ERROR_ERR or XXX_ERR which means the requested operation was not completed. 

Note that this means that WARNING_ERR and lower warnings do not result in a NeticaException being 
thrown, so in those cases where such warnings can occur, you can actively call the static method  
NeticaError.getWarnings  after the method call, to determine if a warning has occurred and, if 
so, what the warning was about.  See the javadocs for NeticaError.getWarnings for examples of 
this. 

It is okay to call NeticaError.getWarnings only once in awhile, since warnings will accumulate 
until the next  getWarnings  invocation, whereupon they are cleared from the warnings list.  

2.4 Inheritance of the Node and Net classes 

Advanced users will want to create their own specialized Node and Net classes.  To make this task easier, 
and avoid the need for copy constructors, we have supplied you with a means to inform Netica-J what 
class you would like it to use when constructing a Net or Node (for example, when Netica-J is reading a 
net in from a file).  The static methods: 

Net.setConstructorClass (String className)   and 
Node.setConstructorClass (String className)  

have been supplied for this purpose.  All they require is that your Net or Node extension have a default 
constructor.  See their javadocs pages for examples. 

Some users will want to use the words “Net” and “Node” for their own net and node classes, that inherit 
from norsys.netica.Net and norsys.netica.Node, respectively. The supplied files in 
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src/neticaEx/aliases/ have examples of this.  Although, overloading the terms “Net” and “Node” like this 
is not difficult, namespace conflicts may arise.  In general, if you explicitly import your Node or Net 
class, the Java compiler will use those as the default classes. 

2.5 Event Handling 

If you wish your program to receive events, Netica-J has the ability to call your program when certain 
types of events occur. 

Any Java object can choose to listen to Netica events by simply implementing the NeticaEventListener 
interface and asking the node or net that generates the events to add itself to that node or net’s listener list. 
The methods Node.addListener and Net.addListener are supplied for this purpose.  Since 
Node and Net objects are already NeticaEventListeners,  they each possess an  eventOccurred 
(NeticaEvent)  method.  If you should choose to override this method, it is important that you call 
the base class method  super.eventOccurred(event)  in your method, so that this node or net 
will still be able to handle delete events properly. 

Currently events are generated for the creation, removal and duplication of Nodes and Nets.  Future 
versions of Netica-J will include more types of events.  If you have a request, please let us know. 

2.6 Multithreading 

If you are running Netica-J within a single process and are not creating more than one thread in that 
process, you don’t need to consider this issue.  However, if you are operating in a concurrent usage 
environment, then please read on. 

Netica-J’s approach to thread-safety is to share the responsibility of thread-safety with the developer.  
Netica-J guarantees thread-safety whenever two threads are operating on two separate nets, and also when 
two threads are operating on separate nodes, or sets of nodes (where the sets share no member nodes), 
within the same net.  However, in the case where two threads can operate on the same node 
simultaneously, Netica-J does not guarantee thread safety, and so in this case only, it is the responsibility 
of the developer to synchronize such code.  This compromise was made for efficiency reasons, since it is 
very likely you will need to synchronize such code blocks anyhow, in order to avoid situations where one 
thread is changing a node that another thread is simultaneously using. 
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2.7 Finalizers & Memory Management 

For large networks and large node tables, Netica can consume large amounts of memory.  Often Java 
developers cease to worry about memory management, as the JVM’s garbage collector will automatically 
collect Java objects that can no longer be referenced.  However, the Java specification does not require 
that a JVM actually call the garbage collector whenever a Java object reference is no long used.  It may or 
may not do so, and it may choose to do so on its own schedule.  Accordingly, you may want to actively 
call the delete() or finalize() methods on resource-hungry objects when you are done with those 
objects, rather than wait for the JVM to free them. 

For most Netica objects, calling  finalize()  frees all their native resources, but not for Node and 
State objects.  For them,  finalize()  just indicates that you are done with the reference, but the native 
resources won’t be freed until the owning Net or Node is freed.  However, calling  Node.delete()  
will remove the Node from its owning Net and free its resources, and calling  State.delete()  will 
remove the State from its owning Node and free its resources. 

Note, if you ever override the finalize() method of any Netica-J class, be certain that you always 
call the base class finalizer method  super.finalize()  as your last instruction, so that Netica-J can 
do its own housekeeping upon the Java object being collected.  For example, if  your class extends 
norsys.netica.Streamer, and you need to override the finalize() method to perform special close-
down handling of files and such, then your finalize method would look something like this: 
 

     /**  
   *  overrides Streamer.finalize(). 
   */ 
  public void finalize() throws NeticaException { 
      . . .  your own finalization logic . . .  
      super.finalize(); 
     } 
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3 Probabilistic Inference 

3.1 Bayes nets and Probabilistic Inference 

A Bayes net (also known as a Bayesian network, BN, BBN, belief network, probabilistic causal network 
or graphical model) captures our believed relations (which may be uncertain, or imprecise) between a set 
of variables that are relevant to some problem.  They might be relevant because we will be able to observe 
them, because we need to know their value to take some action or report some result, or because they are 
intermediate or internal variables that help us express the relationships between the rest of the variables. 

Some Bayes nets are designed to be used only once for a single world situation.  More often, Bayes nets 
are designed for repetitively occurring situations.  They may be constructed using expert knowledge 
provided by some person, by an automatic learning process which examines many previous cases, or by a 
combination of the two.  If the net is to be used repetitively, then it may be considered as a knowledge 
base.  Sometimes nets that are built to be used only once are constructed automatically on-the-fly, perhaps 
by pasting together pieces of nets from libraries using templates.  Then the libraries and templates 
together make up a knowledge base.  Netica is designed to work for either type of application.  It allows 
probabilities to be entered directly, perhaps originally coming from an expert, and it can learn 
probabilities from data.  It will not handle templates directly, but it has the facilities for libraries and on-
the-fly construction that such a program requires. 

A classic example of the use of Bayes nets is in the medical domain.  Here each new patient typically 
corresponds to a new case, and the problem is to diagnose the patient (i.e., find beliefs for the 
undetectable disease variables), or predict what is going to happen to the patient, or find an optimal 
prescription, given the values of observable variables (symptoms).  A doctor may be the expert used to 
define the structure of the net, and provide initial conditional probabilities, based on his medical training 
and experience with previous cases.  Then the net probabilities may be fine-tuned by using statistics from 
previous cases, and from new cases as they arrive. 
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When the Bayes net is constructed, one node is used for each scalar variable, which may be discrete, 
continuous, or propositional (true/false).  Because of this, the words "node" and "variable" are used 
interchangeably throughout this manual, but "variable" usually refers to the real world or the original 
problem, while "node" usually refers to its representation within the Bayes net. 

The nodes are then connected up with directed links.  Usually a link from node A (the parent) to node B 
(the child) indicates that A causes B, that A partially causes or predisposes B, that B is an imperfect 
observation of A, that A and B are functionally related, or that A and B are statistically correlated.  The 
precise definition of a link is based on conditional independence, and is explained in detail in an 
introductory work like RussellNorvig95 or Pearl88.  Finally, probabilistic relations are provided for each 
node, which express the probability of that node having different values depending on the values of its 
parent nodes. 

After the Bayes net is constructed, it may be applied.  For each variable we know the value of, we enter 
that value into its node as a finding (also known as "evidence").  Then Netica does probabilistic inference 
to find beliefs for all the other variables.  Suppose one of the nodes corresponds to the variable 
"temperature", and it can take on the values cold, medium and hot.  Then an example belief for 
temperature could be: [cold - 0.1, medium - 0.5, hot - 0.4], indicating the probabilities that the 
temperature is cold, medium or hot.  The final beliefs are sometimes called posterior probabilities (with 
prior probabilities being the probabilities before any findings were entered).  Probabilistic inference done 
within a Bayes net is called belief updating. 

Probabilistic inference only results in a set of beliefs at each node; it does not change the net (knowledge 
base) at all.  If the findings that have been entered are a true example that might give some indication of 
cases which will be seen in the future, you may think that they should change the knowledge base a little 
bit as well, so that next time it is used its conditional probabilities more accurately reflect the real world.  
To achieve this you would also do probability revision, which is described in the "Learning From Case 
Data" chapter.  As well as regular probabilistic inference, Netica can do a number of other types of 
inference, such as finding the most probable explanation (MPE), finding mutual information, solving 
decision nets, node absorption, etc. 

3.2 Netica's Probabilistic Inference 

There are three ways that Netica can do regular probabilistic inference:  by junction tree compiling,  by 
node absorptions, and by sampling.  For most applications you will want to use the junction tree method, 
because usually it is most convenient and executes much faster.  You may want to use node absorptions 
when you have some findings that are going to be repeated in many inferences (e.g. if you discover that 
something is always true in the context of interest), or large parts of a network that are irrelevant to a 
query, so can be pruned away.  This section deals with junction trees; see the "Modifying Nets" chapter 
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for information on link reversals and node absorption.  Sampling is an inexact method, and is usually used 
only when the Bayes net is too large to compile into a junction tree, or there are continuous variables 
whose value you want to provide by equation, and don’t want to discretize.  It is accomplished by calling 
Net.generateRandomCase() many times (say 1000), with argument method=2 
(FORWARD_SAMPLING), and recording what percentage of the cases resulted in the node of interest having 
a given value. 

Netica uses the fastest known algorithm for exact general probabilistic inference in a compiled Bayes net, 
which is message passing in a junction tree (or "join tree") of cliques.  This is based upon the work of 
LauritzenSpiegelhalter88, which is described in much simpler and more extensive terms in CowellDLS99 
and SpiegelhalterDLC93. 

In this process the Bayes net is first "compiled" into a junction tree.  The junction tree is implemented as a 
large set of data structures connected up with the original Bayes net, but invisible to you as a user of 
Netica.  You enter findings for one or more nodes of the original Bayes net, and then when you want to 
know the resultant beliefs for some of the other nodes, belief updating is done by a message-passing 
algorithm operating on the underlying junction tree.  It determines the resultant beliefs for each of the 
nodes of the original Bayes net, which it attaches to the nodes so that you can retrieve them.  You may 
then enter some more findings (to be added to the first), or remove some findings, and when you request 
the resultant beliefs, belief updating will be performed again to take the new findings into account. 

The amount of memory required by the junction tree, and the speed of belief updating are approximately 
proportional to each other, and are determined by the quality of the compilation.  The quality of the 
compilation depends upon the elimination order used, which is a list of all the nodes in the net.  Any 
order of the nodes will produce a successful compilation, but some do a much better job than others.  You 
may specify an elimination order (perhaps from your own program, or by using Netica Application’s 
“optimize compile”), or just let Netica API find a good one itself. 

3.3 Example of Probabilistic Inference 

Now let's look at an example of using the Netica API to do probabilistic inference.  In this example we 
will read in a simple Bayes net from a file, compile it into a form suitable for fast inference, enter some 
findings, and see how the beliefs of a particular node change with each finding. The example program, 
DoInference.java, can be found in the examples/ directory of the Netica-J installation. 

The net we will use, called ChestClinic, is shown below.  Although reasonable, it is a toy medical 
diagnosis example from LauritzenSpiegelhalter88 that has often been used in the past for demonstration 
purposes.  To a certain degree, the links of the net correspond to causation.  The two top nodes are 
"predispositions" which influence the likelihood of the diseases in the row below them.  At the bottom are 
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symptoms for the disease.  Each possible state of the node is shown in the box.  Ignore the bars for now; 
they were produced by the Netica Application program, and just show the probabilities of each state 
before any findings have arrived. 

Tuberculosis
Present
Absent

1.04
99.0

XRay Result
Abnormal
Normal

11.0
89.0

Tuberculosis or Cancer
True
False

6.48
93.5

Lung Cancer
Present
Absent

5.50
94.5

Dyspnea
Present
Absent

43.6
56.4

Bronchitis
Present
Absent

45.0
55.0

Smoking
Smoker
NonSmoker

50.0
50.0

Visit To Asia
Visit
No Visit

 1.0
99.0

 

Before the example program below will work, the file containing the net “ChestClinic.dne” must exist in 
the “Data Files” subdirectory of the directory running the program.  If you are running this example 
straight from examples/ directory of the Netica API distribution, that will already be the case.  Otherwise 
you should obtain the file from the “examples/Data Files” directory of the Netica API distribution.  Or 
you can build it yourself; the next chapter shows how, and at the end of that chapter is a file listing of the 
net (it is missing the Bronchitis and Dyspnea nodes, but they are not needed now anyway). 

/* 
 *  DoInference.java 
 * 
 *  Example use of Netica-J for doing probabilistic inference.  
 */ 
import norsys.netica.*; 
 

public class DoInference { 
 public static void main (String[] args){ 
  try { 
   Environ env = new Environ (null); 
 

   // Read in the net created by the BuildNet.java example program. 
   Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne")); 
 

   Node visitAsia = net.getNode ("VisitAsia"); 
   Node tuberculosis = net.getNode ("Tuberculosis"); 
   Node xRay = net.getNode ("XRay"); 
 

   net.compile(); 
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   double belief = tuberculosis.getBelief ("present"); 
   System.out.println ("\nThe probability of tuberculosis is " + belief); 
 

   xRay.finding().enterState ("abnormal"); 
   belief = tuberculosis.getBelief ("present"); 
   System.out.println ("\nGiven an abnormal X-ray,\n" + 
    "the probability of tuberculosis is " + belief); 
 

   visitAsia. finding().enterState ("visit"); 
   belief = tuberculosis.getBelief ("present"); 
   System.out.println ("\nGiven an abnormal X-ray and a visit to Asia,\n" + 
    "the probability of tuberculosis is " + belief + "\n"); 
   net.finalize(); 
  } 
  catch (Exception e){ 
   e.printStackTrace(); 
  } 
 } 
} 
 

The program starts by using  new Environ()  as described in the previous chapter.  Next,  new Net()  
is used to read the file and create the net in memory.  If you wish to have detailed descriptions of any of 
these functions, remember that you can look them up in the javadocs. 

You can see that the entire program is wrapped within single try/catch block.  Most Netica-J API methods 
throw NeticaException exceptions, if anything erroneous is attempted or results.  

Next,  net.compile()  builds the junction tree of cliques and attaches it to the data structure of the 
Bayes net, but does not discard any of the information from the original Bayes net.  We can now use this 
net to diagnose a new patient who has just entered the clinic. 

In the next line Node.getBelief() is called to determine the probability tuberculosis is present: 

  double belief = tuberculosis.getBelief ("present"); 
 

This causes a "belief updating" to be done, which finds new beliefs for all the nodes in the net.  This step 
can be time consuming if the net is very large or highly connected.  If Node.getBelief() is then called 
for some other node, it would return almost immediately, because the calculated beliefs have been saved 
at each node.   

The program then prints out the probability of tuberculosis, which we can see is 1.04% from the listing of 
the program output below.  This is the probability that the new patient has tuberculosis before we know 
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anything else about him.  The number may seem high, but then perhaps this net was built for people 
entering a certain clinic, and many of them wouldn't be there unless they have some kind of illness. 

An X-ray is taken of the patient, and it comes out "abnormal".  A Bayes net to be used for anything 
practical would define the X-ray outcome in more detail, but this will do for the example.  We enter this 
finding into the net with: 

  xRay.finding().enterState ("abnormal"); 
 

Then we use Node.getBelief() to cause belief updating to occur again (to incorporate the latest 
finding) and return the probability that the patient has tuberculosis given that his X-ray came out 
abnormal.  The probability has now jumped to 9.24%, so we ask him if he has recently made a trip to 
Asia.  When he answers to the affirmative, and we enter that finding, we then get a tuberculosis 
probability of 33.8%. 

Exercise for the Reader: After further testing you might discover that our patient has lung cancer, and 
want to enter that as a finding.  The lung cancer "explains away" the abnormal X-ray, and so our 
probability that he has tuberculosis would fall to 5.00%.  Try editing and running  DoInference.java. 

The output produced will be: 
 

 
>java […] DoInference  
 
 
The probability of tuberculosis is 0.0104 
 
Given an abnormal X-ray,  
the probability of tuberculosis is 0.0924109 
 
Given an abnormal X-ray and a visit to Asia,  
the probability of tuberculosis is 0.337716 
 
Given abnormal X-ray, Asia visit, and lung cancer,  
the probability of tuberculosis is 0.05 
 
> 

 

For examples involving more complex types of findings, and the retraction of findings, see the "Findings 
and Cases" chapter. 
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4 Building and Saving Nets 
In the previous chapter we loaded a Bayes net into memory from a file and then did probabilistic 
inference using it.  Now we consider how to obtain the net file in the first place.  Some possibilities are: 

• Obtain a net file of interest from Norsys, another company or a colleague (by email, disk, 
downloading from a website, etc.).  The file is machine and operating system independent.  For 
examples of Bayes nets, see:  http://www.norsys.com/netlibrary/index.htm 

• Create the file using a text editor, according to the DNET file specification. 

• Write a program that creates the DNET file containing the net. 

• Use the Netica Application program to construct the net on the screen of your computer using 
simple point-and-click drawing, and then save it to a file. 

• Call routines in the Netica API to construct the net in memory.  Once the net is in memory you may 
use it for probabilistic inference, learning, etc., or you can save it to a file for later usage. 

In this chapter we will discuss the last method.  Below is a complete program which constructs the 
ChestClinic net used in the previous chapter (except, to be more brief, it doesn't include the two nodes 
Bronchitis and Dyspnea, which are not required for the inference examples of that chapter – but the code 
in the examples directory does). This program, BuildNet.java, can be found in the examples/ directory of 
your Netica-J installation. 

/* 
 *  BuildNet.java 
 * 
 *  Example use of Netica-J to construct a Bayes net and save it to file. 
*/ 
import norsys.netica.*; 
import norsys.neticaEx.aliases.Node; 
 

public class BuildNet { 
 public static void main (String[] args){ 
  try { 
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   Node.setConstructorClass ("norsys.neticaEx.aliases.Node"); 
   Environ env = new Environ (null); 
 

   Net net = new Net(); 
   net.setName ("ChestClinic"); 
 

   Node  visitAsia = new  Node  ("VisitAsia", "visit, no_visit”, net);  
   Node  tuberculosis = new  Node  ("Tuberculosis", "present, absent", net); 
   Node  smoking = new  Node  ("Smoking", "smoker, nonsmoker", net); 
   Node  cancer = new  Node  ("Cancer", "present, absent", net; 
   Node  tbOrCa = new  Node  ("TbOrCa", "true, false", net); 
   Node  xRay = new  Node  ("XRay", "abnormal, normal", net); 
 

   visitAsia.setTitle ("Visit to Asia"); 
   cancer.setTitle ("Lung Cancer"; 
   tbOrCa.setTitle ("Tuberculosis or Cancer"); 
 

   visitAsia.state("visit").setTitle ("Visited Asia within the last 3 years"); 
 

   tuberculosis.addLink (visitAsia);       // puts link from visitAsia to tuberculosis 
   cancer.addLink (smoking); 
   tbOrCa.addLink (tuberculosis); 
   tbOrCa.addLink (cancer); 
   xRay.addLink (tbOrCa); 
 

   visitAsia.setCPTable (0.01, 0.99); 
   smoking.setCPTable (0.5,  0.5); 
 

    // VisitAsia present absent 
   tuberculosis.setCPTable ("visit", 0.05, 0.95); 
   tuberculosis.setCPTable ("no_visit", 0.01, 0.99); 
 

    // Smoking present absent 
   cancer.setCPTable ("smoker", 0.1, 0.9); 
   cancer.setCPTable ("nonsmoker", 0.01, 0.99);  
 

    // TbOrCa abnormal normal 
   xRay.setCPTable ("true", 0.98, 0.02); 
   xRay.setCPTable ("false", 0.05, 0.95); 
 

   tbOrCa.setEquation ("TbOrCa (Tuberculosis, Cancer) = Tuberculosis || Cancer"); 
   tbOrCa.equationToTable (1, false, false); 
 

   Streamer stream = new Streamer ("Data Files/ChestClinicBuilt.dne"); 
   net.write (stream); 
 

   net.finalize();          // free resources immediately and safely 
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  } 
  catch (Exception e){ 
   e.printStackTrace(); 
  } 
 } 
} 
 

First, the above program constructs a new empty net with new Net() and then adds each of the nodes 
with new Node().  Each node represents some scalar variable of interest, either discrete or continuous.  
The first string passed to the Node constructor is the name of the node, and the second is a comma-
delimited list of state names for that node.  The states must be mutually exclusive (value can't be two 
different states at the same time), and exhaustive (it is always in one of the states).  Sometimes it is easiest 
to satisfy the exhaustive condition by having a state called "other". 

The names of the net, nodes and states are passed as Strings.  These strings must meet the requirements of 
an IDname, which are: 

• The name must be between 1 and General.NAME_MAX (= 30) characters long, inclusive. 

• The name must consist entirely of alphabetic characters (a-z and A-Z), digits and underscores ('_'). 

• The name must start with an alphabetic character. 

• Often they must be unique within the object they apply to.  Comparisons are case-sensitive. 

In general, Netica restricts names for all objects in this way.  If you find that overly restrictive, then you 
can also give the object a "title", which is an unrestricted Unicode string.  Some objects can have a 
"comment" as well, which is also an unrestricted Unicode string, and it would not be out of the ordinary if 
this were thousands of characters long. 

The states do not need to be named, so instead of the list of state names, a "2" could be passed to Node() 
indicating the number of states the node can take on (0 would be passed for a continuous node).  Later, 
the program could set the state names of the nodes using Node.setStateNames().  Or they could be 
left unnamed, but in general it is recommended to name them in order to keep track of the meanings of 
the states, and to be able to refer to the states by names, as was done in the last chapter.  Then a couple of 
nodes are given titles, which also aren't really required, but are a bit more descriptive than their names 
(the idea is to keep names short for convenience). 

Next, the nodes are linked together with Node.addLink().  A call of the form nodeC.addLink 
(nodeP) makes nodeP a "parent" of nodeC, which means we wish to express the probabilities of nodeC 
as a function of (i.e. "conditioned on") values of nodeP.  Usually the link indicates that nodeP causes 
nodeC, that nodeC is an imperfect observation of nodeP, or that the two nodes are statistically correlated. 
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Finally, the conditional probability tables (CPTs) are added.  For each node, these are the probabilities of 
each of its states, conditioned on the states of its parent nodes.  They are built up by multiple calls to 
NodeEx.setCPTable (which is defined in NodeEx.java as a convenient way to call 
Node.setCPTable()).  The first argument in each call is the names of the conditioning states of its 
parents as a String.  Finally comes a list of numbers, being the probabilities for each of the states of the 
node. 

For example:   cancer.setCPTable ("smoker", 0.1, 0.9)  means that the probability that cancer 
is in its first state given that its parent is in state "smoker" is 0.1, and the probability that it's in its second 
state is 0.9.  In probabilistic notation:  P(cancer=present | smoking=smoker) = 0.1 

As another example,    tbOrCa.setCPTable ("present", "absent", 1.0, 0.0)   means: 
P(TbOrCa=true | Tuberculosis = present, Cancer= absent) = 1.0 

If "*" is used as the name of a conditioning state, then it will apply to all values of that parent node.  
Likewise State.EVERY_STATE can be used with setCPTable(). 

There is one thing to be cautious of when using setCPTable.  If speed is critical, and you must set large 
probability tables, use Node.setCPTable() instead of NodeEx.setCPTable().  For example, 
tbOrCa.setCPTable (TbOrCa, "present", "absent",  1.0, 0.0)  could be accomplished 
by: 

  parentStates[0] = 0; parentStates[1] = 1;      // present absent 
  probs[0] = 1.0; probs[1] = 0.0; 
  tbOrCa.setCPTable (parent_states, probs); 
 

There is an even faster way to set the whole CPT table with one function call.  You call 
Node.setCPTable(double[] cptTable), the whole table for the probability array.  The table you 
pass in should be in row-major form with the last parent varying fastest (the same order the table is 
displayed in the CPT editor of Netica Application). 

If you wish to give a node a deterministic relationship, rather than probabilistic, you may use 
Node.setStateFuncTable(). 

Now the net is fully constructed in memory, and we could use it for inference, do net transforms, etc., but 
in this example we just save it to a file for later use, by calling Net.write().  The resulting file is a pure 
ASCII text file which can be read back by Netica API or by Netica Application, whether they are running 
on the same computer or another type of computer.  The file adheres to the DNET format, which is 
described in the document "DNET File Format".  It will look similar to the below: 
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// ~->[DNET-1]->~ 
 
bnet Built_ChestClinic { 
 
 node VisitAsia { 
  kind = NATURE; 
  discrete = TRUE; 
  states = (visit, no_visit); 
  parents = (); 
  probs =  
   // visit        no_visit      
     (0.01,        0.99); 
  }; 
 
 node Tuberculosis { 
  kind = NATURE; 
  discrete = TRUE; 
  states = (present, absent); 
  parents = (VisitAsia); 
  probs =  
   // present      absent        // VisitAsia  
     (0.05,        0.95,         // visit      
      0.01,        0.99);        // no_visit 
  }; 
 
 node Smoking { 
  kind = NATURE; 
  discrete = TRUE; 
  states = (smoker, nonsmoker); 
  parents = (); 
  probs =  
   // smoker       nonsmoker     
     (0.5,         0.5); 
  }; 
 
 
 node Cancer { 
  kind = NATURE; 
  discrete = TRUE; 
  states = (present, absent); 
  parents = (Smoking); 
  probs =  
   // present     absent        // Smoking    
     (0.1,        0.9,          // smoker     
      0.01,       0.99);        // nonsmoker 
  title = "Lung Cancer"; 
  }; 
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 node TbOrCa { 
  kind = NATURE; 
  discrete = TRUE; 
  states = (true, false); 
  parents = (Tuberculosis, Cancer); 
  probs =  
   // true       false         // Tuberculosis Cancer   
     (1,         0,            // present      present  
      1,         0,            // present      absent   
      1,         0,            // absent       present  
      0,         1);           // absent       absent 
  title = "Tuberculosis or Cancer"; 
  }; 
 
 node XRay { 
  kind = NATURE; 
  discrete = TRUE; 
  states = (abnormal, normal); 
  parents = (TbOrCa); 
  probs =  
   // abnormal    normal        // TbOrCa  
     (0.98,       0.02,         // true    
      0.05,       0.95);        // false 
  }; 
 }; 
 

The DNET file format is a text format, but Netica can also work with a binary format called NETA.  The 
binary files are much smaller, they usually read faster, and Netica can encrypt them.  To save the above 
net in NETA format, you would change the call to net.write() to be: 

  net.write (new Streamer ("Built_ChestClinic.neta")); 

That is, the call is exactly the same as for a DNET file, but the file name has an extension of .neta instead 
of anything else.  The Netica API call for reading the NETA file is the same as for a DNET file; Netica will 
recognize each and handle it appropriately.  If you wish, you can encrypt the net so that only software that 
knows the password will be able to read it.: 

  Streamer stream = new Streamer ("Built_ChestClinic.neta"); 
  stream.setPassword ("MyPassword123"); 
  net.write (stream);        // writes an encrypted file 

Encryption is useful when you need to distribute the net with your application for Netica API to use, but 
the net contains proprietary information.  Encrypted nets can also be read (or created) by Netica 
Application, provided that the user enters the correct password.  For a full code example, including 
reading encrypted files, see the javadocs for Streamer.setPassword(). 

There are a number of other functions that may be used when constructing a net.  For a list of them, see 
the "Low-Level Net Modification" section of the " Functions by Category" chapter, and for detailed 
descriptions of each one, see the javadocs for the Net class. 
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For another example of constructing a net, which demonstrates how to build a decision net, create 
decision and utility nodes, and work with 3-state and continuous nodes, see the "Decision Nets" chapter. 
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5 Findings and Cases 
In the "Probabilistic Inference" chapter we saw how to enter positive findings into a Bayes net to do 
probabilistic inference (findings are also known as “evidence”).  A positive finding is the observation or 
knowledge that some discrete node definitely has a particular value.  However, we may discover that 
some node definitely does not have some particular value, and not have any more information to help us 
determine what value it does have.  This is called a negative finding. 

For example, say the node 'Temperature' can take on the values cold, medium, and hot.  We may obtain 
information that the temperature is not hot, although it doesn't distinguish between medium and cold at 
all.  This is a single negative finding.  If later we receive another negative finding that the temperature is 
not medium, then we can conclude that it is cold.  So, several negative findings can be equivalent to one 
positive finding. 

A third type of finding is a soft finding (also known as “virtual evidence”) or likelihood finding .  In this 
case we receive uncertain information about the value of some discrete node.  It could be from an 
imperfect sensor, or from a friend who is not always right.  Say we have a thermosensor to measure 
'Temperature', which is designed so that when the temperature is hot it is supposed to turn on.  In actual 
practice we find that when the temperature is cold the sensor never goes on, when the temperature is 
medium it goes on 10% of time, and when it is hot it always goes on.  If at a certain time we observe the 
sensor on, and want to enter this finding into the Temperature node, then we do so as a likelihood finding.  
A likelihood finding consists of one probability for each state of the node, which is the probability that the 
observation would be made if the node were in that state.  For our temperature example, the likelihood 
finding would be (0, 0.1, 1).  A common mistake is to think that the likelihood is the probability of the 
state given the observation made (in which case the numbers would have to add to one), but it is the other 
way around. 

A positive finding is equivalent to a likelihood finding consisting of all 0s except a single 1.  A negative 
finding is equivalent to a likelihood finding consisting of all 1s (or some other nonzero number) except a 
single 0.  Two independent findings for a node can be combined by component-wise multiplication of 
their likelihood vectors.  If they are not independent, and it is too inaccurate to approximate them as 
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independent, then they should be combined by adding 2 child nodes to the observed node in the original 
net, one for each observation, connecting them together to show the dependency, and then entering 
positive findings for the child nodes. 

Netica has functions for the direct entry of positive findings, negative findings, likelihood findings, and 
also findings that a continuous node has a certain value.  If several findings are entered for the same node, 
then it combines them as if they were independent observations, and generates an error if they are 
inconsistent.  Checking for consistency between the findings of one node and those of another node 
(given the inter-node relations encoded in the net), is only done if belief updating is done after each 
finding is entered, which will be the case if the net is auto-updating (see Net.setAutoUpdate()) or if 
Node.getBeliefs() is called between entering findings. 

As an example, consider the following section of code to enter findings for node, which has 4 states: 

 (a)  int fst; 
 (b)  Node node; 
 (c)  float[] clike, belief; 
 (d)  float[] like = new float[4]; 
 
 (1)  like[0] = 0.6F;    like[1] = 0.6F;    like[2] = 1.0F;   like[3] = 1.0F; 
 (2)  node.finding().enterLikelihood (like); 
 (3)  node.finding().enterStateNot (1); 
 (4)  like[0] = 0.5F;    like[1] = 0.6F;    like[2] = 0.0F;   like[3] = 0.5F; 
 (5)  node.finding().enterLikelihood (like); 
 (6)  clike = node.finding().getLikelihood(); 
 (7)  //  node.finding().enterState (2); 
 (8)  belief = node.getBeliefs() 
 (9)  fst = node.finding().getState(); 
 (10)  node.finding().clear(); 
 (11)  node.finding().enterState (2); 
 (12)  fst = node.finding().getState(); 
 (13)  clike = node.finding().getLikelihood(); 

Step 1 sets up a likelihood vector, and step 2 enters it as a finding for node.  The finding means that an 
observation was made that would certainly be observed if node were in state 2 or 3, and that would 
occur with probability 0.6 if node were in state 0 or 1.  Step 3 enters a negative finding which means 
"the value of node is not state 1".  Steps 4 and 5 enter another likelihood finding, and then step 6 
retrieves the likelihood vector for the accumulated findings so far.  It will have the values: 

  clike[0] = 0.3      clike[1] = 0.0      clike[2] = 0.0     clike[3] = 0.5 

Notice that clike[1] is 0 due to the negative finding of step 3, and clike[2] is 0 due to the 0 in the 
likelihood finding of steps 4&5. 
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Step 7 is commented out, but if it weren't it would generate an error because saying "the value of node 
is state 2" is inconsistent with the likelihood finding of steps 4&5. 

Step 8 causes a belief updating to be done, and it could return a belief vector with the following values: 

  belief[0] = 0.9     belief[1] = 0.0     belief[2] = 0.0    belief[3] = 0.1 

Even though the accumulated likelihood (clike) said state 3 was the most likely value for node, when 
the findings for other nodes, and their relations with node, were taken into account, state 0 became more 
probable than state 1.  In general, it is not possible to determine anything about what the belief of a node 
is going to be based just on its accumulated likelihood findings, except that states with a zero likelihood 
will have a zero belief. 

Step 9 demonstrates getState()being used to query what finding has been entered for node.  It is 
designed to retrieve positive findings, and since node has likelihood findings, it will just return the 
constant Value.LIKELIHOOD_VALUE. 

Step 10 retracts all the findings that have been entered for node, thereby undoing all of the above, and 
step 11 enters the positive finding that the value of node is state 2, which won't generate an error this 
time like it would have in step 7.  When getState() is called in step 12, it will now return 2, and the 
values of clike after step 13 will be: 

  clike[0] = 0.0      clike[1] = 0.0      clike[2] = 1.0     clike[3] = 0.0 

5.1 Cases and Case Files 

The set of all findings entered into the nodes of a single Bayes net is referred to as a case.  A case may be 
saved to a file for later retrieval.  Case files may consist of a single case, or of many cases.  Case files act 
as databases; they may be used to swap cases in and out of a net as additional findings are obtained or 
beliefs required, to transfer a case from one net to another, or as data to learn a new net. 

Some ways you can make a case file are: 

• Use a text editor to manually construct it, according to the specification below. 

• Write a program whose output is a case file. 

• Export it (as a CSV or tab-delimited text file) from a spreadsheet or database program.  Or you can 
copy from the spreadsheet or database program, paste into a text editor, and save as a text file. 

• Extract it from a database using  Caseset.addCases (DatabaseManager, …)  followed by 
Caseset.writeCases(…) 

• Use Netica Application to enter findings by pointing and clicking, and then choose "Save Case" 
from the menu. 
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• Call Netica API functions to enter the case as findings into a Bayes net, write the case to a file, and 
repeat for each case to be put in the file. 

Case files (single-case or multi-case) are pure ASCII text files.  They may contain 
// ~->[CASE-1]->~  somewhere in the first 3 lines, to indicate to Netica what the file contains, but 
that isn’t required.  Then comes a line consisting of headings for the columns.  Each heading corresponds 
to one variable of the case, and is the name of the node used to represent the variable (sometimes the 
variables are called attributes and the entries in the column values, i.e. attribute-value).  The headings are 
separated by spaces and/or tabs (it doesn't matter how many). 

The case data is next, with one case per line (a single-case file would only have one such line).  The 
values of the variables are in the same order as the heading line, and are separated by spaces or tabs (the 
columns don't have to "line up" as they do in the example files below).  The value of a discrete variable is 
given by its state name, or if it doesn't have a state name, then by the number symbol, followed by its 
state number (e.g. #3).  The state names are preferred, since the order of the states may be changed some 
time, and that would render the file invalid. 

The value of a continuous variable is given by a number, expressed as an integer, decimal, or in scientific 
notation (e.g. -3.21e-7).  If the variable has been discretized, then the value may be given by a state name 
or state number, but the continuous number is preferred if it is available.  That way, the case file can be 
used for different discretizations of that variable in the future.  Try to use the correct number of 
significant figures, since future versions of Netica may use this information. 

A single-case file is the same as one with multiple cases, except it just has 1 case.  There may be as much 
whitespace as desired between the lines, including Java/C/C++ style comments.  If the values of some of 
the variables are unknown for some of the cases, then a question mark or asterisk ( ? or * ) is put in the 
file instead of the value (this is known as missing data). 

If you read in a case, and the case file has a node value that doesn't correspond to any state of that node in 
the net (e.g. the states of net node 'color' are 'red' and 'green', and the value for color in the case file is 
'blue'), then an error will be generated.  An exception to this is if one of the states of the net node is called 
"other".  Then the case will be read without error, and the finding for the node will be 'other'. 

There are two special columns that a file may have which don't correspond to nodes.  One provides an 
identification number for each case, which must be an integer between 0 and 2 billion.  The heading for 
this column is "IDnum".  Identification numbers do not have to be in order through the file.  The other 
special column has the heading "NumCases", and indicates the frequency or multiplicity of the case.  A 
multiplicity of m indicates m cases with the same variable values.  It is not required to be an integer, so it 
can be used to represent a frequency of occurrence if desired.  The missing data symbol ("*") should not 
appear in either of these columns if they exist. 
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As an example of a case file, here is a listing of "ChestClinic.cas" which is produced by the program 
SimulateCases.java, listed below and included in the examples/ directory of your distribution. Note that 
the case file you obtain may be a little different, since random numbers are involved.  It has an IDnum 
column, but no frequency column. 

 
IDnum VisitAsia Tuberculosis Smoking   Cancer  TbOrCa XRay     Bronchitis Dyspnea 
1     no_visit  present      smoker    absent  true   abnormal absent     present 
2     no_visit  absent       smoker    absent  false  normal   present    present 
3     no_visit  absent       smoker    present true   abnormal present    present 
4     no_visit  absent       nonsmoker absent  false  normal   absent     absent 
5     no_visit  absent       smoker    present true   abnormal present    present 
6     no_visit  absent       smoker    absent  false  abnormal present    present 
.... 
198   no_visit  absent       smoker    absent  false  normal   present    present 
200   no_visit  absent       smoker    present true   abnormal present    present 
 

Here is listing of SimulateCases.java, the program which generated the above case file: 

/*  
 *  SimulateCases.java 
 * 
 *  Example use of Netica-J for generating random cases that follow 
 *  the probability distribution given by a Bayes net.  
 */ 
import java.io.File; 
import norsys.netica.*; 
 

public class SimulateCases { 
 

 public static void main (String[] args){ 
  int numCases = 200; 
  System.out.println ("Creating " + numCases + " random cases..."); 
 

  try { 
   Environ env = new Environ (null); 
 

   // Read in the net created by the BuildNet.java example program. 
   Net  net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne")); 
   NodeList nodes = net.getNodes(); 
 

   (new File ("Data Files/ChestClinic.cas")).delete();     // since "ChestClinic.cas" may  
      // exist from a previous run and we do not wish to append 
   Streamer caseFile = new Streamer ("Data Files/ChestClinic.cas"); 
 

   net.compile(); 
 

   for (int n = 0;  n < numCases;  n++) { 
    net.retractFindings(); 
    int res = net.generateRandomCase (nodes, 0, 20); 
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    if (res >= 0)  
     net.writeFindings (caseFile, nodes,  n, -1.0);  
 
   net.finalize(); 
   } 
  } 
  catch (Exception e){ 
   e.printStackTrace(); 
  } 
 } 

First the program reads in the same net that we built in the “Building and Saving Nets” chapter.  Then it  
deletes a file named "ChestClinic.cas" if there is one (otherwise it would try to add the cases to this file).  
Then, in a loop repeated 20 times it generates a random case from the ChestClinic net.  These cases will 
be distributed according to the probability distribution of that net.  Each case is saved to the case file 
named "ChestClinic.cas", a sample of which we saw above.  We will use this case file in the next chapter, 
“Learning From Case Data”. 

Here is another example of a case file, this time for cars brought into a garage (notice BatAge, which is a 
continuous variable): 

 
// ~->[CASE-1]->~ 
Starts BatAge Cranks Lights StMotor SpPlug MFuse Alter BatVolt Dist PlugVolt Timing 
false  5.9    false  off    ?       fouled okay  ?     dead    ?    ?        good 
false  1.3    false  off    ?       okay   okay  ?     dead    ?    none     bad 
false  5.2    false  off    okay    okay   okay  okay  dead    okay none     good 
true   4.1    true   bright ?       okay   okay  ?     strong  okay strong   ? 
true   2.7    ?      bright ?       wide   okay  ?     strong  okay ?        ? 
?      ?      true   bright ?       fouled okay  ?     ?       okay strong   good 
false  1.7    true   off    okay    okay   okay  okay  dead    ?    none     good 
true   2.9    true   bright ?       ?      ?     ?     strong  okay strong   ? 
 

5.2 Casesets 

Netica-J has a very powerful class called Caseset.  A Caseset instance represents a set of cases that may 
be in a database, in memory or in a disk file (in any of a number of formats).  You use the same functions 
to operate on Casesets no matter where they are or in what format they are. 

To make a Caseset, you first create an empty one with one of the Caseset constructors. For example: 

  Caseset cs = new Caseset(); 
 

Then you add cases to the Caseset.  If you want them to come from a database, you use  
Caseset.addCases (DatabaseManager, …), as described in the next section.  Alternatively, you 
can add cases from a text file of cases in the format described in the previous section.  You first create a 
Streamer that refers to the file, using  new Streamer ("yourFile.cas").  If you are creating the 
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case file dynamically, it is probably much more efficient to just create it in a memory buffer, say a byte 
array, and then create the  new Streamer (new ByteArrayInputStream (yourByteArray)) 
instead.  Then you add the cases within it to the Caseset using: 

  Caseset.addCases (Streamer streamer, double degree, String control); 
 

With the current version of Netica, you can only add cases to a Caseset once. 

You can write all the cases in a Caseset to a file with: 

  Caseset.writeCases (Streamer file, String control); 
 

That can be used to extract the cases from a database, and then write them out to a text file. 

You can use  Learner.learnCPTs()  to learn the conditional probability tables of a Bayes net from a 
Caseset, as described in the Learning chapter.  Future versions of Netica will have many more operations 
available for Casesets. 

When you are done with the Caseset, you may reduce the resources required by calling: 

  Caseset.finalize(); 
 

5.3 Connecting with a Database 

Netica can connect with a database (such as that created by Microsoft SQL Server, Microsoft Access, 
MySQL or Oracle), and use the data in it to create a Caseset, then learn a Bayes net, etc.  First you create 
a DatabaseManager instance using: 

  DatabaseManager (String odbcConnectionString, String control, Environ env); 
 

The connection string has information on the file location of the database, the driver to use  (depending on 
whether MySQL, MS Access, etc.), any password required to access the database, etc, as described in the 
javadocs for the DatabaseManager constructor. 

Now that you have the database manager, you can use it to execute whatever SQL commands you would 
like on the database, using: 

  void DatabaseManager.executeSQL (String sqlCmd, String control); 
 

If you wish to transfer all the findings currently entered into a Bayes net as a new record of the database, 
use: 

  void DatabaseManager.inserFindings (NodeList nodeList, String columnNames,  
                                                                String tables, String control); 
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To use the database with Netica functions such as learning from data, you create a Caseset instance from 
it with: 

  void Caseset.addCases (DatabaseManager dbMgr,  
                                           double degree, NodeList nodeList,  
                                           String columnNames, String tables,  
                                           String condition, String control) 
 

When you are done with the database manager, you may reduce the resources required by calling: 

  void DatabaseManager.finalize() 

Here is an example program to learn Bayes net CPT tables from a database.  For more explanation on 
learning, see the next chapter, and especially a similar code example in the “EM and Gradient Descent 
Learning” section. 
 

 DatabaseManager dbMgr =  
  new DatabaseManager ("driver=Microsoft Access Driver (*.mdb); dbq=.\\myDB.mdb;UID=dba1;",  
                                          "pooling", env); 
 Net net = new Net(); 
  

 // ... Put code to add nodes and links to net here ... 
 //     You could use DatabaseManager.addNodes(); 
 

 NodeList nodes = net.getNodes();  
 Caseset cs = new Caseset(); 
 cs.addCases (dbMgr, 1.0, nodes,  
                        "Sex, Height, \"Owns a house\", \"Number of dogs\"", 
                         null, "'Owns a house' = 'yes'", null); 
 Learner learner = new Learner (Learner.EM_LEARNING, null, env); 
 learner.learnCPTs (nodes, cs, 1.0); 
 learner.finalize(); 
 cs.finalize(); 
 dbMgr.finalize(); 
 

5.4 Case Files with Uncertain Findings 

The case files discussed so far have only had values that were completely certain (or completely missing).  
But Netica can also create and read case files having values that are known with limited accuracy, or only 
known to within some likelihood.  In fact, Netica has a very elegant, practical and powerful way of 
expressing uncertain findings, known as the UVF file format. 
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When Netica reads in a case containing uncertain findings (for example, by Net.readFindings()), it 
will enter them into the Bayes net as soft findings, so any probabilistic inference, node absorption, 
sensitivity analysis, etc. will properly account for them.  Also, the operations on case files, such as 
learning from cases, test net with cases and process cases, will work properly on case files containing 
uncertain values.  When learning from such cases, some learning algorithms will work better than others.  
For more information on that, and an example of working with case files having uncertain findings, see 
the “EM and Gradient Descent Learning” section in the next chapter. 

Below is a list of the different types of uncertain findings, their syntax in the case file, and what they 
mean.  Each type of uncertain finding can appear anywhere in a case file where a regular finding normally 
would.  For example, a UVF file could be a regular case file (as described in earlier sections), a CSV file, 
or tab delimited text file, but with some of the values replaced with entries having the syntax described 
below. 

Gaussian 

Syntax: m+-s m and s are real numbers  

Examples: 5+-2 3.27+-0.03 0+-1e-5 

This is for a Gaussian (also known as “normal”) soft finding, where the m is the mean and s is the 
standard deviation.  Note that there cannot be any space before or after the +-.  The uncertainties in 
measurements from lab instruments, or polling results, are often expressed with a +- notation, and 
indicate a Gaussian distribution, so they can now be easily input into Netica (although sometimes they 
may mean an interval distribution, as described below). 

Interval 

Syntax:  [a, b] a and b are real numbers, state names or state indexes preceded by # 

Examples:  [0, 10] [-3, 2.27]  [lo, med] [#1, #3] 

Indicates the finding is known to be within the two endpoints.  There may be spaces before or after the 
comma or brackets.  Intervals of states include both endpoints, so [lo, med] includes states lo, med and 
any states between.  Intervals of continuous variables include the lower endpoint, but not the upper 
endpoint, so [0, 10] for variable X means  0 ≤ X < 10.  Likelihood within the interval is constant; outside 
the interval it is zero. 

Unbounded Interval 

Syntax: >m   or   <m m is a real number, state name or state index preceded by # 
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Examples: >4.75 <-10 <med >#2 

Indicates that the finding is above a certain value, or below a certain value.  When m is a state, the 
interval includes the endpoint; when it is for a continuous variable, the interval includes the endpoint only 
for > intervals (so > is really ≥).  The interval can potentially extend to infinity, but in practice will 
probably be limited by known maximum values for the variable.  Likelihood within the interval is 
constant; outside the interval it is zero. 

Set of Possibilities 

Syntax: {s1, s2, … sn} each si is a state name, state index preceded by #, Gaussian, interval 
or unbounded interval 

Examples: {lo, med} {red, blue, green} {#5, #7, #1} 

 {[0,3.5], [4.5, 10]} {[#35,#122], >#500} 

Indicates the finding is known to be one of a listed set of possibilities.  There may be spaces before or 
after the comma or brackets.  The finding can be considered to be a disjunction of the elements.  
Likelihood of elements in the set is one, of those not in the set is zero. 

Set of Impossibilities 

Syntax: ~{s1, s2, … sn}  each si is a state name, state index preceded by #, interval or 
unbounded interval 

Examples: ~{lo} ~{red, blue, green} ~{#5, #7, #1} 

 ~{[0, 3.5]} 

Indicates the finding is known to not be any of a listed set of possibilities.  There may be spaces before or 
after the comma or braces, but not between the tilde (~) and the brace.  This is the same as "Set of 
Possibilities" except the "possible" states are those that are not listed, rather than those that are listed.  The 
likelihood of elements in the set is zero; of those not in the set, it is one. 

A negative finding can be represented easily by just listing the state(s) eliminated by the observation. 

Likelihood 

Syntax: {s1 p1, s2 p2, … sn pn} each si is a state name, state index preceded by #, 
Gaussian, interval or unbounded interval.  Each pi is a 
number between 0 and 1.  Some pi may be absent. 
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Examples: {female .8, male .3}  {3+-1 0.2, 7+-2 0.4} 

 {[0,3.5] .05, [3.5,10] 0.1, other 0.5} 

This is the same as a set of possibilities, but each possibility is weighted with a likelihood that appears 
after it (separated by a single space).  The most common kind of likelihood vectors are for discrete 
variables, where each state is listed, followed by its probability.  Any states that appear without a 
probability have a likelihood of 1, and any states that don't appear at all have a likelihood of 0. 

Arbitrary likelihood distributions for continuous variables can be formed by a series of adjacent intervals, 
each with its own probability.  Or the elements can overlap, and then their likelihoods are combined.  For 
example  {[0,10] .1, [2,4] .2}  would be the combination of a rect function extending from 0 to 10 with 
height 0.1, and another rect from 2 to 4 with a height of 0.2.   

Another useful distribution that is easy to form is the weighted combination of Gaussians.  For example  
{3+-1 0.2, 7+-2 0.4}  is a bi-modal distribution with peaks at 3 and 7. 

It is possible to mix weighted Gaussians, intervals, and discrete states within a single { ... } likelihood 
vector. 

Negative Likelihood 

Syntax: ~{s1 p1, s2 p2, … sn pn}   each si is a state name, state index preceded by #, 
interval, or unbounded interval.  Each pi is a positive 
number.  Some pi may be absent. 

Examples: ~{red, green, teal .2, olive .8} 

 ~{[0,2] .4, [2,6] .2} 

The same as a set of impossibilities, but each entry is weighted with a likelihood, which appears after it.  
If no number appears after it, its likelihood is 0.  Entries that have numbers above 1 are indicated to be 
more probable than those not listed, and entries with numbers below 1 are less probable than the unlisted 
ones (unlisted entries have a likelihood of 1). 

Complete Uncertainty 

Syntax: *   [i.e. the syntax is just an asterisk] 

If nothing is known regarding the value of this variable (i.e. missing data), then a question mark ? or an 
asterisk * should be used to indicate that.  It is equivalent to  ~{}  which is a likelihood of all ones. 
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6 Learning From Case Data 
Bayes net learning is the process of automatically determining a representative Bayes net given data in 
the form of cases (called the training cases).  Each case represents an example, event, object or situation 
in the world (presumably that exists or has occurred), and the case supplies values for a set of variables 
which describes the event, object, etc, as specified in the previous chapter.  Each variable will become a 
node in the learned net (unless you want to ignore some of them), and the possible values of that variable 
will become the node’s states. 

The learned net can be used to analyze a new case which comes from the same (or appropriately similar) 
world as the training cases did.  Typically the new case will provide values for only some of the variables.  
These are entered as findings, and then Netica does probabilistic inference to determine beliefs for the 
values of the rest of the variables for that case.  Sometimes we aren't interested in values for all the rest of 
the variables, but only some of them, and we call the nodes that correspond to these variables target 
nodes.  If the links of the net correspond to a causal structure, and the target nodes are ancestors of the 
nodes with findings, then you could say that the net has learned to do diagnosis.  If the target nodes are 
descendants, then the net has learned to do prediction, and if the target node corresponds to a "class" 
variable, then the net has learned to do classification.  Of course the same net could do all three, even at 
the same time. 

The Bayes net learning task has traditionally been divided into two parts:  structure learning and 
parameter learning.  Structure learning determines the dependence and independence of variables and 
suggests a direction of causation, in other words, the placement of the links in the net.  Parameter 
learning determines the conditional probability table (CPT) at each node, given the link structures and the 
data.  Currently Netica only does parameter learning (i.e., you link up the nodes before learning begins).  
However, you can use Netica to do structure learning by writing your own small program that tests a 
number of candidate link structures to find the best one.  You write a function which searches through 
some candidate link structures that are plausible and practical in your domain, perhaps also adding trial 
latent variables.  For each structure you use Netica’s parameter learning functions described in this 
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chapter, then test the resulting net with Netica’s net testing functions also described in this chapter.  The 
net that scores the highest (perhaps penalized for complexity) is the best structure. 

You might not want Netica to learn the CPTs of all the nodes in your Bayes net.  Some of the nodes may 
have CPTs that have already been learned well, were created manually by an expert, or are based on 
theoretical knowledge of the problem at hand (perhaps expressed by an equation).  Netica allows you to 
restrict the learning process to a subset of the nodes, and those nodes are called the learning nodes. 

If every case supplies a value with certainty for each of the variables, then the learning process is greatly 
simplified.  If not, there are varying degrees of partial information: 

1. If there is a variable for which none of the cases have any information, that variable is known as a 
latent variable or “hidden variable”. 

2. If some cases have values for a certain variable, and others don’t, that is known as missing data. 

3. Some values for variables may not be given with certainty, but only as soft findings.. 

It may seem strange to be learning a net that has latent variables, since none of the training cases have any 
information on them.  You introduce a latent variable as a parent node (or intermediate node) of multiple 
child nodes, and Netica uses the correlations among the children to determine relationships between the 
latent node with others.  The result may be a Bayes net that is actually simpler (has fewer CPT entries), 
and generalizes better (i.e. performs better on new cases seen).  For an example of using Netica to learn a 
latent variable, see the “Learn Latent.dne” net in the examples folder of the Netica Application 
distribution, or get it from the Norsys net library. 

6.1 Algorithms 

There are three main types of algorithms that Netica can use to learn CPTs: counting, expectation-
maximization (EM) and gradient descent.  Of the three, “counting” is by far the fastest and simplest, and 
should be used whenever it can.  It can be used whenever there is not much missing data or uncertain 
findings for the learning nodes or their parents.  When learning the CPT of a node by counting, Netica 
will only use those cases which supply values of certainty for the node and all of its parents.  Obviously, 
if any of those are latent nodes, counting will not work. 

If you can’t use counting, then you must use EM learning or gradient descent.  For each application area, 
it is usually best to try each one to see which gives the better results.  Generally speaking, EM learning is 
more robust (i.e., gives good results in wide variety of situations), but sometimes gradient descent is 
faster.  For all three algorithms, the order of the cases doesn’t matter. 
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During Bayes net learning, we are trying to find the maximum likelihood Bayes net, which is the net that 
is the most likely given the data.  If N is the net and D is the data, we are looking for the N which gives 
the highest P(N|D).  Using Bayes rule, P(N|D) = P(D|N) P(N) / P(D).  Since P(D) will be the same for all 
the candidate nets, we are trying to maximize P(D|N) P(N), which is the same as maximizing its 
logarithm:  log(P(D|N)) + log(P(N)).  Below we consider each of the two terms of this equation.  The 
more data you have, the more important the first term will be compared to the second. 

There are different approaches to dealing with the second term log(P(N)), which is the prior probability of 
each net (i.e. how likely you think each net is before seeing any data).  One approach is to say that each 
net is equally likely, in which case the term can simply be ignored, since it will contribute the same 
amount for each candidate net.  Another is to penalize complex nets by saying they are less likely (which 
is of more value when doing structure learning).  Netica bases the prior probability of each net on the 
experience and probability tables that exist in the net before learning starts, which appears to be a unique 
and elegant approach.  If the net has not been given any such tables, then Netica considers all candidate 
nets equally likely before seeing any data. 

The first term log(P(D|N)) is known as the net’s log likelihood ,  If the data D consists of the n 
independent cases d1, d2, … dn, then the log likelihood is:  log(P(D|N)) = log(P(d1|N) P(d2|N) … P(dn|N)) 
= log(P(d1|N)) + log(P(d2|N)) + … + log(P(dn|N)).  Each of the log(P(di|N)) terms is easy to calculate, 
since the case is simply entered into the net as findings, and Netica’s regular inference is used to 
determine the probability of the findings. 

Both EM and gradient descent learning work by an iterative process, in which Netica starts with a 
candidate net, reports its log likelihood, then processes the entire case set with it to find a better net.  By 
the nature of each algorithm the log likelihood of the new net is always as good as or better than the 
previous.  That process is repeated until the log likelihood numbers are no longer improving enough 
(according to a tolerance that you can specify), or the desired number of iterations has been reached (also 
a quantity you can specify).  Netica uses a conjugate gradient descent, which performs much better than 
simple gradient descent. 

To understand how each algorithm works, it is best to consult a reference, such as Korb&Nicholson04, 
Russell&Norvig95 or Neapolitan04.  Briefly, EM learning repeatedly takes a Bayes net and uses it to find 
a better one by doing an expectation (E) step followed by a maximization (M) step.  In the E step, it uses 
regular Bayes net inference with the existing Bayes net to compute the expected value of all the missing 
data, and then the M step finds the maximum likelihood Bayes net given the now extended data (i.e. 
original data plus expected value of missing data).  Gradient descent learning searches the space of Bayes 
net parameters by using the negative log likelihood as an objective function it is trying to minimize.  
Given a Bayes net, it can find a better one by using Bayes net inference to calculate the direction of 
steepest gradient to know how to change the parameters (i.e. CPTs) to go in the steepest direction of the 
gradient (i.e. maximum improvement).  Actually, it uses a much more efficient approach than always 
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taking the steepest path, by taking into account its previous path, which is why it’s called conjugate 
gradient descent.  Both algorithms can get stuck in local minima, but in actual practice do quite well, 
especially the EM algorithm. 

Most neural network learning algorithms (such as backpropagation and its improvements) are gradient 
descent algorithms.  That invites a comparison between Bayes net learning and neural net learning, with 
latent variables corresponding to hidden neurons.  In the case of Bayes net learning, there are generally 
fewer hidden nodes, the learned relationships between the nodes are generally more complex, the result of 
the learning has a direct physical interpretation (by probability theory) rather than just being black-box 
type weights, and the result of the learning is more modular (parts can be separated off and combined 
with other learned structures). 

6.2 Experience 

There has been considerable controversy over the best way to represent uncertainty, with some of the 
suggestions being probability, fuzzy logic, belief functions, Dempster-Shafer, etc.  Currently probability 
and fuzzy logic are the most practical methods.  Of these two, probability has a much sounder theoretical 
basis (at least with respect to the way they are actually used).  However, a deficiency of using nothing but 
probability is the inability to represent ignorance in an easy way. 

As an example, suppose you had to draw a ball from a bag full of black and white balls and you couldn't 
tell how many white balls and how many black balls there were in the bag.  If you had to supply a 
probability that you were going to draw a white ball, it would be 0.5 providing you had no additional 
information. 

Contrast this with the case where you can count the balls in the bag beforehand (there are 10 of each), and 
you will shake the bag before you draw.  In this situation the probability of drawing a white ball is 0.5, 
but whereas in the first case you were in a state of ignorance, now you feel much more informed. 

If you needed to do probabilistic inference or solve decision problems as in the previous chapters, then the 
0.5 probability would be sufficient in either situation.  In both situations you should believe and act as if 
there was an equal chance of drawing a white or a black ball.  So the concept of experience is not required 
for these types of problems, and you do not have to be able to represent ignorance (ignorance is the 
endpoint of the experience spectrum).  However, for learning and communicating knowledge, it is useful 
to be able to represent the degree of experience as well as the probability, as we shall see. 

If you are going to sequentially draw a number of balls from the bag, then things are different.  If you 
drew 4 white balls in a row, then in the first situation your probability that the next ball will be white 
should be greater than 0.5, because you are learning (perhaps incorrectly) that there seem to be a lot of 
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white balls.  In the second situation your probability of the next ball being white should be less than 0.5, 
because you know that now there are more black than white balls in the bag (10 black and 6 white). 

One way to handle this using just probabilities is to keep track of your beliefs about the ratio of white to 
black balls in the bag.  Then you will have many probabilities, one for each possible ratio.  Each of these 
probabilities will change as you draw a ball, and when you are asked to supply a probability that the next 
ball drawn will be white, they will all be involved in the calculation.  This is sometimes called second 
order probabilities, but here it is really just a probability distribution over possible ratios.  If you 
discretized the possible ratios then it would be easy to set up a Bayes net for this, with the ratio being one 
of its nodes.  That approach works fine for this simple problem, but you can imagine that if you had many 
interrelated variables, that it could become too cumbersome. 

If during the learning we consider the conditional probabilities being learned to be independent of each 
other, and the prior distribution to be Dirichlet, then we can use beta functions to represent the 
distributions over "probabilities".  Each beta function requires 2 parameters to be fully specified, and 
Netica uses a probability number and an experience number.  This way true Bayesian learning of the 
probabilities is easy to do, since it is easy to express how the beta function should change to account for a 
new case (i.e., it is easy to find the posterior beta function, given the prior one and the case).  In fact, that 
is what the simple equation at the end of this section does. 

At each node Netica stores one experience number for each possible configuration of states of the parent 
nodes, and with it a vector of probabilities (one probability for each state of the node).  The experience 
level corresponds roughly to the number of cases that have been seen (normally it is 1 more than the 
number of cases).  This experience has sometimes been called the "estimated sample size" or "ess".  To 
save space, Netica doesn't store experience numbers for nodes that haven't been involved in any learning 
and haven't had a manual entry of experience. 

6.3 Counting Learning 

Before learning begins (providing there has been no previous learning or entry of probabilities by an 
expert) the net starts off in a state of ignorance.  All probabilities start as uniform, and experience starts 
off as the number of states of the node (which is like a single 1 in each unnormalized CPT cell).  If you 
would rather that it started from some different value, then you can use Node.setExperTable() to 
initialize the experience values before learning starts, but then you must also initialize the CPTs to 
uniform.  A different way is to apply a simple correction at the end of the learning, which does the same 
as Netica Application’s Table → Harden function. 

For each case to be learned the following is done.  Only nodes for which the case supplies a value 
(finding), and supplies a value for all its parents, have their experience and conditional probabilities 
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modified (i.e., no missing data for that node).  Each of these nodes are modified as follows.  Only the 
single experience number, and the single probability vector, for the parent configuration which is 
consistent with the case is modified.  The new experience number (exper') is found from the old (exper) 
by: 

exper' = exper + degree 

where degree is the multiplicity of the case (passed to the learning routine).  It is normally 1, but is 
included so that you can make it 2 to learn two identical cases at once, or -1 to "unlearn" a case, etc. 

Within the probability vector, the probability for the node state that is consistent with the case is changed 
from probc to probc' as follows: 

probc' = (probc * exper + degree) / exper' 

The other probabilities in that vector are changed by: 

probi' = (probi * exper) / exper' 

which will keep the vector normalized (exper' and exper act as the new and old normalization factors). 

6.4 How To Do Counting-Learning 

There are two ways to do counting-learning from cases: singly (one-by-one) or in batch mode. 

Here is how you learn from a single case.  If the case is not already in the Bayes net, you enter it into the 
net as findings (see the "Findings and Cases" chapter).  Then Net.reviseCPTsByFindings() is 
called with a list of nodes.  Nodes not present in the list passed will not have their probabilities revised, so 
normally it will be a list of all the nodes in the net.  Nodes in the list for which the case provides sufficient 
data will have their probabilities revised a small amount to account for the case, and their experience 
levels increased slightly as well. 

The batch mode way of revising probabilities does exactly the same thing as the one-by-one way, but for 
a whole file of cases at once.  You call Net.reviseCPTsByCaseFile() with the file and the same list 
of nodes as before, and it does the same thing as the one-by-one method for each of the cases in the file, 
only much more efficiently than if you were to read in the cases one-by-one and call 
Net.reviseCPTsByFindings() each time.  See the "Findings and Cases" chapter for more 
information on creating a file of cases. 

If the case file has a node value that doesn't correspond to any state of that node in the net (e.g. the states 
of net node 'color' are 'red' and 'green', and the value for color in the case file is 'blue'), then an error will 
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be generated.  An exception to this is if one of the states of the net node is called "other".  Then the case 
will be read without error, and the finding for the node will be 'other'. 

6.5 Example of Counting-Learning 

The program below, LearnCPTs.java, will demonstrate learning from cases.  This program can be found 
in the examples/ directory of your Netica-J distribution.  The program operates by first reading from file a 
very simple example net (the net that was constructed in the "Building and Saving Nets" chapter), and 
then duplicates it by making a new net and duplicating all the nodes into it.  Next it removes the 
probabilities and experience from the duplicated nodes with Node.deleteTables().  The idea is to 
relearn approximations of those probabilities by using the case file “ChestClinic.cas” that we created in 
the last chapter, “Findings and Cases”. In effect, we start with a net that has the structure of 
ChestClinic.dne, but no probabilities and experience (since they were deleted), and then using a set of 
cases that match the probability distribution of that net, we will learn a net that should have a similar 
probability distribution.  Of course, the more samples that are in the case file, the better the approximation 
to the original net. 

The program reads all the cases with a single instruction:  

  reviseCPTsByCaseFile (casefile, learned_nodes, 1.0); 

If instead we wanted to examine each case, say to exclude outliers, perform calculations on them, or 
otherwise modify them, we could have looped through the case file, entering each as a finding, and used 
the instruction 

  reviseCPTsByFindings (learned_nodes, 1.0); 

to incrementally adjust the CPTs.  The comment section at the bottom of LearnCPTs.java shows you how 
to use this alternate approach. 

Finally, the program concludes by saving the new net to file, so that we can compare it with the old.  It 
will be similar, but the probabilities won't be quite the same.  The more cases we put in the case file, the 
more similar the learned net will be to the original.  Of course, in a real application there would be no 
point in relearning a net which already existed; you would use a case file that had real cases in it.  But this 
demonstration is good to show that the new net comes out similar to the old. 

/*  
 *  LearnCPTs.java 
 * 
 *  Example use of Netica-J for learning the CPTs of a Bayes net from a file of cases.  
 */ 
import java.io.File; 
import norsys.netica.*; 
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public class LearnCPTs { 
 

 public static void main (String[] args){ 
  try { 
   Environ env = new Environ (null); 
 

   // Read in the net created by the BuildNet.java example program. 
   Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne")); 
   NodeList nodes = net.getNodes(); 
   int numNodes = nodes.size(); 
 

   // Remove CPTables of nodes in net, so new ones can be learned. 
   for (int n = 0;  n < numNodes;  n++){ 
    Node node = nodes.getNode (n); 
    node.deleteTables(); 
   } 
   // Read in the case file created by the SimulateCases.java 
   // example program, and learn new CPTables.  
 

   Streamer caseFile = new Streamer ("Data Files/ChestClinic.cas"); 
   net.reviseCPTsByCaseFile (caseFile, nodes, 1.0); 
 

   net.write (new Streamer ("Data Files/Learned_ChestClinic.dne")); 
 
   net.finalize(); 
  } 
  catch (Exception e){ 
   e.printStackTrace(); 
  } 
 } 
} 
   /*======================================= 
    * This alternate way can replace the net.reviseCPTsByCaseFile  
    * line above, if you need to filter or adjust individual cases. 
    */ 
   long[ ] casePosn = new long[1]; 
   casePosn [0] = Net.FIRST_CASE; 
   while (true) { 
    net.retractFindings(); 
    net.readFindings (casePosn, caseFile, nodes, null, null); 
    if (casePosn[0] == Net.NO_MORE_CASES)  break; 
 

    net.reviseCPTsByFindings (nodes, 1.0); 
    casePosn[0] = Net.NEXT_CASE; 
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   } 
 

6.6 EM and Gradient Descent Learning 

As described in the “Algorithms” section above, counting learning should be done when possible, because 
it is much faster and simpler, but in cases where there is a substantial amount of uncertain findings, 
missing data or even variables for which there are no observations (!), EM or gradient descent learning 
can do amazing things.  If you are unfamiliar with the nature of these learning algorithms, you may first 
want to experiment with them on your data a little using Netica Application, and read its onscreen help 
about EM learning.  The below method can be used to do any of Netica’s learning algorithms. 

First you create a Learner by calling 

  Learner (int method, String info, Environ env); 
 

passing for method the algorithm you wish to use (one of  Learner.COUNTING_LEARNING, 
Learner.EM_LEARNING, or Learner.GRADIENT_DESCENT_LEARNING). 

If you are doing EM learning or gradient descent learning, then if you wish you can adjust the stopping 
conditions with: 

  void setMaxIterations (int maxIterations); 
  void setMaxTolerance (double logLikelihoodTolerance); 
 

Finally, you perform the learning with: 

void learnCPTs(NodeList nodeList, Caseset caseset, double degree)by passing in the nodes whose CPTs 
you wish to modify, the data as a Caseset (see the previous chapter for instructions on creating a 
Caseset), and the degree, which is a multiplier for the frequency of the cases (e.g. degree = 3 means 
act as if every case in the Caseset appeared 3 times). 

When you are done with the Learner, you may reduce the resources required by calling: 

  void finalize(); 

Here is a small code example:   (for another, see “Connecting with a Database” in the previous chapter) 

  Streamer netfile = new Streamer ("ParameterlessNet.dne"); 
  Streamer  datafile = new Streamer ("Data.cas"); 
  Net  net  = new Net (netfile, env, "no_visual"); 
  NodeList  nodes = net.getNodes(); 
  Caseset cases = new Caseset(); 
  Learner learner = new Learner (Learner.EM_LEARNING); 
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  learner.setMaxTolerance (1e-5); 
  cases.addCases (datafile, 1.0, null); 
  learner.learnCPTs (nodes, cases, 1.0); 
  learner.finalize(); 
  cases.finalize(); 
 

6.7 Fading 

When a Bayes net is supposed to capture relationships between variables in a world which is constantly 
changing, it is useful to treat more recent cases with a higher weight than older ones.  An example might 
be an adaptive Bayes net which is constantly receiving new cases and doing inferences while it slowly 
changes to match a changing world. 

Netica achieves this partial forgetting of the past by using fading.  Every so often you call 
Node.fadeCPTable(), passing it a degree between 0 and 1, and it will reduce the experience and 
smooth the probabilities of the node by an amount dictated by the degree.  A degree of 0 has no effect, 
while a degree of 1 does complete forgetting, resulting in uniform distributions with no experience.  
Calling fadeCPTable() once with degree = 1-a, and again with degree = 1-b, is equivalent to a 
single call with degree = 1-ab. 

During fading, each of the probabilities in the node's conditional probability table is modified as follows 
(where prob and exper are the old values of probability and experience, and prob' and exper' are the new 
values): 

prob' = normalize (prob * exper * (1 - degree) + degree * BaseExper) 

where BaseExper is normally 1 (see section 7.1).  exper' is obtained as the normalization factor from 
above (remember that there is one experience number per vector of probabilities).  So: 

prob' * exper' = prob * exper * (1 - degree) + degree * BaseExper 

When learning in a changing environment, you would normally call fadeCPTable() every once in a 
while so that what has been recently learned is more strongly weighted than what was learned long ago.  
If an occurrence time for each case is known, and the cases are learned sequentially through time, then the 
amount of fading to be done is:  degree = 1 - r Δt  where Δt is the amount of time since the last fading 
was done, and r is a number less than, but close to, 1 and depends on the units of time and how quickly 
the environment is changing.  Different nodes may require different values of r.  See the example in the 
description of fadeCPTable() in the "Function Reference" chapter. 
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6.8 Performance Testing a Net using Real-World Data 

After you have built a Bayes net, either by hand based on the judgments of an expert, or automatically by 
learning it from data, you may want to test how effective it is.  That can be done by using a set of cases 
gathered from the real-world or from the environment in which the net will be used.  You should use a 
different data set than was used to build the Bayes net, otherwise your net may score too high, since it will 
probably test slightly better on the training set than other sets.  A common approach when learning a 
Bayes net from data, is at the beginning to set aside a certain percentage of the (well shuffled) cases to be 
used for later testing.  These are known as the test cases (or “test data”), as opposed to the training cases 
(or “training data”). 

The first step is to identify the variables (i.e. nodes) that Netica won’t know the value of during actual 
usage of the net.  For example, if the net is to be used as a classifier, then during usage Netica won’t know 
the value of the class variable.  If the net is to be used for prediction, then Netica won’t know the values 
of the variables that are yet to occur in time.  If the net is to be used for diagnosis, Netica won’t know 
what the actual faults or internal states are during the diagnosis.  The variables (i.e. nodes) that will not be 
known during usage are called the unobserved nodes. 

The next step is to choose which of the unobserved nodes you want to test the Bayes net’s ability on.  
These are the nodes that statistics will be generated for, and are called the test nodes. 

In the code, you first call  new NetTester(), passing in a list of the test nodes.  If there are some 
unobserved nodes that aren’t already in the test nodes, you pass in a list of them as the unobsv_nodes 
argument (which can also include any of the test nodes if you want – it makes no difference since Netica 
will take as the unobserved nodes the union of the two lists). 

Then you call  Tester.testWithCaseset(), passing in the case file containing the real-world data.  
Netica will go through the case file, processing the cases one-by-one. Netica first reads in a case, except 
for findings for the unobserved nodes. It then does belief updating to generate beliefs for each of the test 
nodes, and checks those beliefs against the true value for those nodes as supplied by the case file (if they 
are supplied for that case). It accumulates all the comparisons into summary statistics.  If you want, you 
can call testWithCaseset() several times with different files to generate statistics for the combined 
data set. 

Finally, you call functions to retrieve the actual performance statistics you desire.  You can obtain the 
error rate with NetTester.getErrorRate(), the logarithmic loss with NetTester.getLogLoss(), 
the quadratic loss with NetTester.getQuadraticLoss() and the whole confusion matrix with 
NetTester.getConfusion().  Be sure to see the function documentation for each of these functions, 
and NetTester() and NetTester.testWithCaseset(), for more details on the whole process.  
Also, you can contact Norsys for a document with more information on what the various measures mean. 
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Here is some example program that rates the toy Bayes net “ChestClinic”, to test the “Cancer” node 
diagnosis assuming that the other disease nodes (Tuberculosis, Bronchitis, TbOrCa) are also unobserved 
nodes: 

/* 
 *  TestNet.java 
 * 
 *  Example use of Netica-J for testing the performance of  
 *  a learned net with the net-tester tool. 
 */ 
import java.io.File; 
import norsys.netica.*; 
 

public class TestNet { 
 

 public static void main (String[] args){ 
 try { 
  Environ env = new Environ (null); 
  Net        net = new Net (new Streamer ("Data Files/ChestClinic.dne")); 
 

  Node tuberculosis  = net.getNode ("Tuberculosis"); 
  Node cancer       = net.getNode ("Cancer"); 
  Node tbOrCa          = net.getNode ("TbOrCa"); 
  Node bronchitis      = net.getNode ("Bronchitis"); 
 

  //  The observed nodes are typically the factors known during diagnosis: 
  NodeList testNodes = new NodeList (net); 
  testNodes.add (cancer); 
 

  //  The unobserved nodes are typically the factors not known during diagnosis: 
  NodeList unobsvNodes = new NodeList (net); 
  unobsvNodes.add (bronchitis); 
  unobsvNodes.add (tuberculosis); 
  unobsvNodes.add (tbOrCa); 
 

  net.retractFindings();    // IMPORTANT: Otherwise any findings will be part of tests !! 
  net.compile(); 
 

  NetTester tester  = new NetTester (testNodes, unobsvNodes, -1); 
  Streamer  inStream  = new Streamer ("Data Files/ChestClinic.cas"); 
  Caseset  testCases  = new Caseset(); 
 

  testCases.addCases (inStream, 1.0, null); 
  tester.testWithCaseset (testCases); 
 

  printConfusionMatrix (tester, cancer); 
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  System.out.println ("Error rate for "            + cancer.getName() + " = " + tester.getErrorRate (cancer)); 
  System.out.println ("Logarithmic loss for " + cancer.getName() + " = " + tester.getLogLoss (cancer)); 
 

  // the following are not strictly necessary, but a good habit 
  testCases.finalize(); 
  tester.finalize(); 
  net.finalize();    
 } 
 

 catch (Exception e){ 
  e.printStackTrace(); 
 } 
} 
 
 /* 
  *  Print a confusion matrix table 
  */ 
 public static void printConfusionMatrix (NetTester nt, Node node) throws NeticaException { 
  int numStates = node.getNumStates(); 
  System.out.println ("\nConfusion matrix for " + node.getName() + ":"); 
     

  for (int i = 0;  i < numStates;  ++i) 
   System.out.print ("\t" + node.state(i).getName()); 
  System.out.println ("\tActual"); 
 

  for (int a = 0;  a < numStates;  ++a){ 
   for (int p = 0;  p < numStates;  ++p) 
    System.out.print ("\t" + (int) (nt.getConfusion (node, p, a))); 
   System.out.println ("\t" + node.state(a).getName()); 
  } 
 } 
} 
 

And this is the output it produces: 
Confusion matrix for Cancer: 
        present absent  Actual 
        9       2       present 
        4       185     absent 
Error rate for Cancer = 0.03 
Logarithmic loss for Cancer = 0.08219048904200114 
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7 Modifying Nets 
A common scenario is that you’ve built a Bayes net using Netica Application (or Netica API, as described 
in the “Building and Saving Nets” chapter) and saved the file.  Now your program uses Netica API to 
read the net file and use it to solve problems.  Each of the problems is a little bit different, and it’s not 
enough to just enter different findings, you need to modify the net itself.  Perhaps it’s a small change like 
altering the CPT tables, adding new states to a node, changing utilities or converting decision nodes to 
nature nodes.  Or maybe it is a major operation like taking several net fragments from different nets and 
stitching them together to make a new net for the particular problem at hand.  This chapter discusses some 
ways to modify a net in place, and then in the section “Node Libraries” it discusses how to create 
“libraries” of nodes or network fragments, and then stitch them together on the fly to create models.  
Finally it discusses transforms that may be done on a Bayes net to remove nodes or reverse the direction 
of links while maintaining the overall probabilistic relationship between the remaining nodes. 

7.1 Common Modifications 

Most of the functions introduced previously for building a Bayes net can also be used to modify it.  For 
instance, new Node() and Node.addLink() can introduce new variables or dependencies, and 
Node.delete() and Node.deleteLink() can remove them. 

Almost every property of nets and nodes can be altered.  Even decision nodes can be converted to nature 
nodes (Node.setKind()), or vice versa, without losing their CPT tables or other properties.  That can 
be useful to model situations with multiple agents, where the nodes that are the decisions of one agent, are 
nature nodes to the other agents.  First the optimal decisions are found for the first agent, and then those 
decision nodes are converted to nature nodes when finding the optimal decisions for the next agent. 

When adapting a net to a new environment, states can be added (Node.addStates()), removed 
(Node.state().delete()), or the order of the states may be changed (Node.reorderStates()).  
In each case the tables of the nodes being changed, and the tables of their children, will be appropriately 
modified. 
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The node tables themselves may be modified.  Perhaps CPTs need to be changed based on frequency data 
that is calculated externally.  Or perhaps the utility tables of utility nodes are modified based on 
preference information about a particular end-user, and then new optimal decisions found.  The most 
common change to CPT tables is to adjust them to take into account case data from the world, and that is 
covered in detail in the “Learning From Case Data” chapter.  Tables may be changed with:  
Node.setCPTable(), Node.setStateFuncTable(), Node.setRealFuncTable(), 
Node.equationToTable() and Node.deleteTables(). 

An advanced program may wish to lay out the visual positions of all the nodes, so that when the Bayes 
net file is read by Netica Application, they will be displayed in the desired layout.  Or perhaps choose in 
which style to display each node (e.g. Belief Bars, Labeled Box or Hidden).  The functions to use are: 
Node.visual().setPosition() and Node.visual().setStyle(). 

7.1 Node Libraries 

Often the probabilistic relation between a node and its parents represents a small piece of local knowledge 
which may be applicable in a number of different nets to be used in different situations.  That relation 
may have been learned from data, or entered by an expert.  Each new net it is placed in captures the 
global relations between such local pieces of knowledge, and belief updating combines the local and 
global knowledge with the details of some particular case. 

For example, suppose that you made a simple net consisting of a node called Weather connected to a node 
called Forecast.  The link between them could go either way, since we can't really capture causation (they 
are both caused by other variables, like the previous weather), but say you put the link from weather to 
forecast because often it’s better to put links from more immutable to less immutable variables.  Each day 
you revised its probabilities so that eventually it accurately captured the probabilistic relationship between 
the morning weather forecast and the weather for that day.  Then you could put it in a library to later graft 
into nets for inference involving the weather and its forecast, such as the decision problem discussed in 
the "Decision Nets" chapter. 

Forecast

Weather

Noisy_Or

x2

x3
x1

instrument

instrument_status

temperature
flow_rate
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As another example, suppose you have a device for measuring the flow rate in a pipe.  This sensor will 
produce biased readings depending on the ambient temperature, and it can break in a few different ways, 
each of them producing wrong or inaccurate readings.  You can model the sensor with a 4 node net, 1 
node for the reading on the sensor, and 3 parent nodes corresponding to: actual flow rate, ambient 
temperature, and sensor status (okay, broken_1, broken_2, etc.).  You enter the probabilistic relationship, 
and then you disconnect the node from its parents and place it in a library (so it appears as in the above 
diagram; disconnection and grafting are explained below).  Later, if you have a net to model a situation in 
which you have made two measurements with the device, you just duplicate the device characteristics 
node from the library twice into the new net, and graft it to the appropriate nodes in that net (see diagram 
below).  Note that if the ambient temperature could be different between the two measurements, then the 
room_temp node would appear as two connected nodes, similar to the flow nodes, and the same goes for 
the instrument_status node if the device may have broken between measurements.  Automating the 
process of net construction for new situations is an area of active research, with dynamic Bayes nets, 
templates and graph grammars being some of the methods used. 

instrument1 instrument2

room_temp

flow2flow1

instrument_status

 
 

Netica makes it easy to maintain libraries of disconnected nodes and subnets.  To make a new library, just 
use new Net().  Nodes and subnets can be copied to it using Net.copyNodes(), which can transfer 
material from one net to another, and also copies all the links between nodes in a subnet.  When a node is 
being duplicated, but one of its parents isn't, then Net.copyNodes() will give the duplicated node a 
disconnected link where that parent was.  This is a link which only has a place-holder for a parent, and is 
meant to be reconnected to another node before being used for inference.  In this way the conditional 
probability relationship that the node had with its parents is not lost.  The disconnected link is given the 
name of the parent it once had if the link is not already named.  If you ever want to check whether a link 
is disconnected, use Node.getKind(). 

When you want to use something in the library, you call Net.copyNodes() again, this time to duplicate 
from the library into the new net.  Then you connect up any disconnected links with  
Node.switchParent(), which will switch out the parent place-holder, and switch in the new parent. 
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Below is a code example for the flow measuring instrument described earlier: 

Net net = new Net(); 
Node flow  = new Node ("flow_rate", 0, net); 
Node temp = new Node ("temperature", 0, net); 
Node broken  = new Node ("instrument_status", 5, net); 
Node instrument = new Node ("instrument", 0, net); 

 

instrument.addLink (flow); 
instrument.addLink (temp); 
instrument.addLink (broken); 

 

// ... 
// … Put here: Build probabilistic relation for node 'instrument', 
// … either by learning from cases, or entry by an expert. 
// ... 

 

// The below will put a copy of the 'instrument' node,  
// disconnected from its parents, into the library. 
// Its disconnected link names will be those of the old parents. 

 

Net libnet = new Net(); 
duplicate (instrument, libnet);       // see definition below 
libnet.write (new Streamer ("Library.dnet")); 

 

net.finalize(); 
libnet.finalize(); 
 
// This is a static variant of NodeEx.duplicate(), used above 

 

public static Node duplicate (Node oldNode, Net newNet) throws NeticaException { 
      NodeList nodes = new NodeList (oldNode.getNet()); 
      nodes.add (oldNode); 
      NodeList newNodes = newNet.copyNodes (nodes); 
      return newNodes.getNode (0); 
 } 

 

Now the library is constructed and saved to file, with instrument as the only node in it. 

At a later session, we use the library to construct appnet, an application net in which the instrument is 
used to measure flow1 and flow2, which are in the same room at the same temperature: 

 
Net appnet = new Net(); 
Node flow1 = new Node ("flow1", 0, appnet); 
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Node flow2 = new Node ("flow2", 0, appnet); 
Node rtemp = new Node ("room_temp", 0, appnet); 
Node status = new Node ("instrument_status", 0, appnet); 

  

// ... 
// … Put here: Build rest of application net. 
// … Connect up nodes flow1, flow2, rtemp, and status. 
// … Add probabilistic relations for flow1, flow2, rtemp, and status. 
// ... 

 

// The below will get 2 copies of the instrument node from the library, 
// and put them in the application net. 

 

libnet = new Net (new Streamer ("Library.dnet")); 
Node instrument1 = duplicate (libnet.getNode ("instrument"), appnet); 
Node instrument2 = duplicate (libnet.getNode ("instrument"), appnet); 

 

// The below will graft them to the other nodes in the application net. 
 

instrument1.switchParent (instrument1.getInputIndex ("flow_rate"), flow1); 
instrument1.switchParent (instrument1.getInputIndex ("temperature"), rtemp); 
instrument1.switchParent (instrument1.getInputIndex ("instrument_status"), status); 
instrument2.switchParent (instrument2.getInputIndex ("flow_rate"), flow2); 
instrument2.switchParent (instrument2.getInputIndex ("temperature"), rtemp); 
instrument2.switchParent (instrument2.getInputIndex ("instrument_status"), status); 

  

Now the application net appnet is ready for probabilistic inference.  Perhaps we have positive findings for 
the instrument node (i.e. what we read from its dial), and we use them to determine flows and their 
uncertainties in a way that properly accounts for random (uncorrelated) and systematic (correlated) errors, 
as well as all the background knowledge about the situation. 

7.2 Net Reduction 

Suppose you have a large net that has been constructed over time by a combination of expert assistance 
and probability learning.  It shows the relationships between hundreds of variables, and contains much 
valuable information that could be used in a number of different applications. 

Now you want to use it in an application where only 10 of the variables are of interest to you.  In every 
query of the new application, four of them will always have the same value.  For instance, one of the 
nodes in the original net might by Gender, and in the restricted application the net will only be used for 
females, so we would like to enter a permanent finding of 'female' for the node Gender.  These nodes are 
called context nodes.  In each of the queries, you will be receiving new findings for 4 other nodes, and 
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then you want the resulting beliefs of the remaining 2.  The nodes that will have new findings are called 
findings nodes, and those whose beliefs you will want are called target nodes.  The hundreds of other 
nodes in the net might be involved in intermediate calculations, but you don't care about their values 
explicitly. 

You can simplify the large net down to one with just 6 nodes using Net.absorbNodes().  First enter 
the permanent findings for the context nodes.  Then make a list of all the nodes except the findings nodes 
and the target nodes, and pass it to Net.absorbNodes().  The resulting 6 node net will give the same 
inference results as the original large one, for the restricted queries you will be making.  If you are 
guaranteed that there will always be findings for every findings node, then you can then further simplify 
things by removing any links that go from findings node P to findings node C, providing C does not have 
a target node as an ancestor.  This means that if you use Node.reverseLink() to make all the findings 
nodes ancestors of all the target nodes, then you can remove all the links between the findings nodes.  
Any findings node that is left completely disconnected by this operation is irrelevant to the query.  And 
now you can examine the conditional probability relations of the target nodes to see directly how they 
depend on the findings.  You may just be able to look up the desired probabilities without doing belief 
updating at all! 

There is a danger to keep in mind.  Even though the reduced net has fewer nodes than the original, it may 
actually be more complex, if many links were added by Net.absorbNodes() or 
Node.reverseLink() (remember that the size of a node's conditional probability table can be 
exponential in its number of parents).  Generally speaking, absorbing out context nodes (i.e. nodes with 
findings entered) which have many ancestor nodes results in the worst increase in complexity.  The next 
worst is absorbing out non-context nodes (i.e. nodes with no findings) which have many descendant 
nodes.  Absorbing out context nodes with no ancestors, or non-context nodes with no descendants, will 
not add any links.  Of course, if the number of target and findings nodes is very small, the resulting net 
must be simpler, although the transformations to generate it might temporarily require a lot of memory. 

7.3 Probabilistic Inference by Node Absorption 

From the previous section you may have realized it is possible to do probabilistic inference using node 
absorption, by entering all the findings, and then absorbing all the nodes except for a single target node.  
The resulting probability distribution for that node can be obtained with Node.getCPTable(), and it 
will be a single belief vector (because the node won't have any parents), that is the same as the belief 
vector that would be obtained by compiling the Bayes net, and obtaining the beliefs via belief updating 
with Node.getBeliefs(). 

The question is: which method is faster?  If you need the beliefs for all the nodes, then you would have to 
repeat the absorbing-node method for each of the nodes (duplicating the net each time, since it is 
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destroyed in the process), and so it will usually be far slower.  But if you only need the beliefs of one 
node, for one set of findings, and there are many nodes in the net that are irrelevant to the particular 
query, then the node absorption method can be much faster (providing a good “elimination order” for 
absorbing the nodes is used). 

It should be mentioned that node absorption will also work with decision nets (see the "Decision Nets" 
chapter) to find optimal decisions.  When a decision node is absorbed it is not removed from the net; 
instead it is completely disconnected and its decision table set to the optimal decision function. 

When using Net.absorbNodes() for decision nets, the decision nodes must have no-forgetting links, 
and if the list of nodes to absorb does not include all the nodes in the net, it must consist of a descendant 
subnet (see Shachter86, Shachter88 and Shachter89 for definitions and details of the algorithm used).  If 
there are missing no-forgetting links or missing descendants in the list of nodes to absorb, then 
Net.absorbNodes() will absorb as many nodes as possible, then generate an error explaining exactly 
why it was impossible to proceed. 
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8 Decision Nets 
Chapter 3 was about probabilistic inference using a Bayes net, where the purpose was to determine new 
beliefs (in the form of probabilities) as observations were made or facts gathered.  A Bayes net is 
composed only of nature nodes (which may be “chance” nodes or “deterministic” nodes).  By adding 
decision nodes and utility nodes (also known as “value” nodes) to a Bayes net, we obtain a decision net 
(also known as an “influence diagram”).  Decision nets can be used to find the optimal decisions which 
will maximize expected utility. 

First, we give a small warning.  You may find it overly challenging if your first usage of Netica API is to 
build a large decision net with multiple decisions, and you haven’t had related experience.  People usually 
start by building Bayes nets, then nets with just one decision, and after they have some experience, nets 
with a few decisions.  Also, they usually have some experience working with nets using Netica 
Application, or a similar program, before using Netica API for complex decision nets. 

As an example decision net, let's consider a very tiny one from Ross Shachter known as "Umbrella".  It 
has 2 nature nodes representing the weather Forecast in the morning (sunny, cloudy or rainy), and what 
the Weather actually turns out to be during the day (sunshine or rain), a decision node of whether or not to 
take an Umbrella, and a utility node that measures our level of Satisfaction.  There is a link from Weather 
to Forecast capturing the believed correlation between the two (perhaps based on previous observations). 

Forecast Weather

Umbrella Satisfaction
 

There is a link from Forecast to Umbrella indicating that we will know the forecast when we make the 
decision.  It is always the case that links entering a decision node indicate what variables will be known at 
the time of the decision.  What we wish to find in solving the decision problem is a function providing the 
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value of the decision node for each possible setting of its parent nodes, which maximizes the expected 
value of the utility nodes.  In other words, we find a contingent plan that tells which decision to make for 
each possible set of observations that will be made when it is time to act on the decision.  There is no link 
from Weather to Umbrella; if we knew for certain what the weather was going to be, it would be easy to 
decide whether or not to take the umbrella. 

There are links from Weather and Umbrella to Satisfaction, capturing the idea that I am most happy when 
it is sunny and I don't take my umbrella (utility = 100), next most when it is raining and I take my 
umbrella (utility = 70).  I hate carrying my umbrella on a sunny day (utility = 20), but am most unhappy if 
it is raining and I don't have one (utility = 0). 

8.1 Programming Example 

Below is a listing of the program, MakeDecision.java, which build this decision net in memory, and then 
solves it (i.e., finds the optimal decisions).  This program can be found in the examples/ directory of your 
Netica-C distribution.  Much of it is very similar to building a Bayes net (see the chapter "Building and 
Saving Nets" for explanations of those parts).  We will discuss the things new to this example. 

When a node is first created with new Node(), it starts off as a nature node.  Here we change Umbrella 
into a decision node, and Satisfaction into a utility node using Node.setKind().  Node() is passed the 
number of states of the node, and in this example, as well as having 2-state nodes, there is also a 3-state 
node, and a continuous node (indicated by passing 0 for number of states).  Utility nodes are always 
continuous deterministic nodes.  We use Node.setRealFuncTable() to build up the relations of a 
deterministic node instead of Node.setCPTable(), but it works in a similar fashion. 

/*  
 *  MakeDecision.java 
 * 
 *  Example use of Netica-J to build a decision net and choose an optimal decision with it. 
 */ 
import norsys.netica.*; 
import norsys.neticaEx.aliases.Node; 
 

public class MakeDecision { 
 

 public static void main (String[] args){ 
  try { 
   Node.setConstructorClass ("norsys.neticaEx.aliases.Node"); 
   Environ env = new Environ (null); 
   Net net = new Net(); 
 

   Node weather       = new Node ("Weather", "sunshine,rain", net); 
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   Node forecast      = new Node ("Forecast",  "sunny,cloudy,rainy", net); 
   Node umbrella      = new Node ("Umbrella" "take_umbrella, dont_take_umbrella", net); 
   Node satisfaction  = new Node ("Satisfaction",  0, net);      // 0 for continuous node 
 

   umbrella.setKind (Node.DECISION_NODE); 
   satisfaction.setKind (Node.UTILITY_NODE); 
 

   forecast.addLink (weather); 
   umbrella.addLink (forecast); 
   satisfaction.addLink (weather); 
   satisfaction.addLink (umbrella); 
 

   weather.setCPTable (0.7, 0.3); 
 
   //                                 forecast 
   //                                 weather   | sunny cloudy rainy 
   forecast.setCPTable ("sunshine", 0.7, 0.2, 0.1); 
   forecast.setCPTable ("rain",  0.15, 0.25, 0.6); 
 

   //                                                 weather  umbrella utility 
   satisfaction.setRealFuncTable ("sunshine, take_umbrella", 20.0); 
   satisfaction.setRealFuncTable ("sunshine, dont_take_umbrella", 100.0); 
   satisfaction.setRealFuncTable ("rain, take_umbrella", 70.0); 
   satisfaction.setRealFuncTable ("rain, dont_take_umbrella", 0.0); 
 

   net.compile(); 
 

   //-----    1st type of usage:  To get the expected utilities, given the current findings 
 

   forecast.finding().enterState ("sunny"); 
 

    float[] utils = umbrella.getExpectedUtils();  // returns expected utilities, given current findings 
 

   System.out.print   ("If the forecast is sunny,  "); 
   System.out.println ("the expected utility of " + umbrella.state(0) + " is " + utils[0] +  
                                  ", of " + umbrella.state(1) + " is " + utils[1]); 
 

   net.retractFindings(); 
   forecast.finding().enterState ("cloudy"); 
   utils = umbrella.getExpectedUtils(); 
 

   System.out.print   ("If the forecast is cloudy, "); 
   System.out.println ("the expected utility of "  + umbrella.state(0) + " is " + utils[0] +  
                             ", of "                     + umbrella.state(1) + " is " + utils[1] + "\n"); 
 
   //-----    2nd type of usage:  To get the optimal decision table 
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   net.retractFindings(); 
   umbrella.getExpectedUtils(); // causes Netica to recompute decision tables,  
    // given current findings (which in this case are no findings) 
 

   for (int fs = 0;  fs < forecast.getNumStates();  ++fs){ 
    int[] parStates = new int[1]; 
    parStates[0] = fs; // forecast is the parent of umbrella 
    int decision = umbrella.getStateFuncTable (parStates, null) [0]; 
    System.out.println ("If the forecast is " + forecast.state (fs) + 
                                   ",\tthe best decision is " + umbrella.state (decision)); 
   } 
   net.finalize();      // free resources immediately and safely; not necessary, but a good habit 
  } 
  catch (Exception e) { 
   e.printStackTrace(); 
  } 
 } 
} 

Once the net is built, the program calls Net.compile(), and then Node.getExpectedUtils() to 
force a belief updating, which will build a new deterministic table for each decision node.  Each 
deterministic table represents a function which provides a value for the node for each possible 
configuration of parent values.  Since the links into a decision node indicate what the decision maker will 
know when he is about to make the decision, this function provides a decision for each possible 
information state.  The decision functions Netica finds are the ones that provide the highest expected 
value of the utility node (or the sum of the utility nodes if there are more than one).  The above program 
uses Node.getStateFuncTable() to access this decision function, and prints out the following: 

 
If the forecast is sunny,  the expected utility of take_umbrella is 24.205606, 
of dont_take_umbrella is 91.58878 
If the forecast is cloudy, the expected utility of take_umbrella is 37.44186, 
of dont_take_umbrella is 65.11628 
 
If the forecast is sunny,    the best decision is dont_take_umbrella 
If the forecast is cloudy,   the best decision is dont_take_umbrella 
If the forecast is rainy,    the best decision is take_umbrella 

Note that Node.getExpectedUtils() or Node.getBeliefs() must be called before 
Node.getStateFuncTable() to have Netica build the decision table (and again after entering findings 
if you want it optimized for the new findings). 

For more information on decision nets in general, and using Netica to work with them, see the onscreen 
help system of Netica Application (and there is also some information in the tutorial at the Norsys 
website). 
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9 Drawing Nodes and Nets 
Netica-J includes several Java-SWING components for displaying Netica nets and nodes.  The color, 
layout, and general appearance of the displayed components are very similar to the style used in the 
Netica Application program (see http://www.norsys.com/netica.html for details, to purchase, or to 
download a size-restricted free version.) 

With the exception of norsys.netica.VisualNode, all of the classes relevant to graphical display can be 
found in the  norsys.netica.gui  package.  The two most important classes in this package are NodePanel 
and NetPanel.  Each of these is a  javax.swing.JPanel that displays assorted graphical components (e.g., 
JLabels) within itself.  You typically have full access to these subcomponents, and so can change colors, 
fonts, and borders, attach event listeners, set visibility, etc., just as you would with any AWT/SWING 
component. 

The philosophy behind the development of the gui package is to enable you to very easily and rapidly add 
graphical displays to your Netica-J programs.  For instance, the following tiny program is all that is 
needed to display a net: 
 

import norsys.netica.*; 
import norsys.netica.gui.*; 
import javax.swing.*; 
 

class DrawNet extends JFrame { 
 

 public DrawNet (String netName) throws Exception  { 
  Net net = new Net (new Streamer (netName)); 
  net.compile();    // optional 
  NetPanel netPanel = new NetPanel (net, NodePanel.NODE_STYLE_AUTO_SELECT); 
  getContentPane().add (new JScrollPane (netPanel));   // adds the NetPanel to ourself 
  setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE); 
  setSize (800, 500);   // or supply getPreferredSize(); 
  show(); 
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    } 
 
 public static void main (String[] args){ 
  try { 
   Environ env = new Environ (null); 
   DrawNet dn = new DrawNet (args[0]); 
  } 
  catch (Exception e){ 
   e.printStackTrace(); 
  } 
 } 
} 
 

You call the program with:  java DrawNet SomeNet.dne  (or .neta) and  it will draw the net in a 
fashion similar to the way that Netica Application does, with the nature nodes drawn using the popular 
“belief-bar” style.  If you’d prefer a different style, then simply replace 
NodePanel.NODE_STYLE_AUTO_SELECT  in the NetPanel constructor call with the style of your 
choice.  Here is the window that the command 

      java DrawNet "Data Files/ChestClinic_WithVisuals.dne"   creates: 
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9.1 Netica Net Visual Properties and the gui Package 

Netica files (.dne and .neta files) may optionally contain visual information as to the size, position, and 
visual style of the nodes they contain. This visual information is used both by the Netica Application and 
the Netica-J gui package in order to help decide where and how to display the net components.  The 
general policy of a Netica graphical application is to attempt to make sense of and employ the visual 
information that is present, but if it is not able to do so, it will ignore that information. 

9.2 Node Position 

If a Netica file has been saved without visual information, then all of the Nodes are by default given a 
position of (0,0). To add position information, you may use the Netica Application to display the net and 
then position the Nodes as desired, or from within the Java API you may use  Node.visual().setPosition(). 

Once a NodePanel has been created, it is a Java component that can be moved anywhere (e.g., using 
java.awt.Component.setLocation()) without affecting the Node.visual() position data.  If you want to keep 
the displayed position in sync with the Netica visual() position, you must either manage this yourself, or 
else confine yourself to moving the component by calling NodePanel.moveBy(). 

9.3 Node Style 

If a Node does not contain any style information (introduced using Netica Application or by calling  
Node.visual().setStyle(), then Netica-J will apply certain default styles when creating NodePanels 
(NodePanel.createNodePanel()) for that node.  Conversely, if the node does contain style information, 
that information will be treated as the preferred style when Netica-J is given an option in deciding what 
variety of NodePanel to create. 
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9.4 Drawing Nodes 

You do not require the NetPanel class to draw nodes.  You may draw the nodes directly using any of 
several NodePanels that are supplied: 

 

The NodePanel class itself is an abstract base class that manages a number of common functions of all 
NodePanels, such as hooking up to the Netica Node that is represented and discovering it’s title (or name, 
if it lacks a title), managing event listeners, and managing display modes (hi-lighted, normal, or grayed). 

9.5 Event Handling 

Besides being standard JComponents and hence being able to partake of all the standard Java 
AWT/SWING events, NetPanel and NodePanel objects are also 
norsys.netica.gui.RecursingEventListeners.  The RecursingEventListener interface provides two very 
convenient methods: addListenerToAllComponents (java.util.EventListener eventListener) and 
removeListenerFromAllComponents (java.util.EventListener eventListener).  These will recursively 
run through all the subcomponents of the NetPanel or NodePanel and attach the EventListener to those 
subcomponents.  Thus, with a single command, you can add an event listener to all the components 
within a NetPanel. 

9.6 NetViewer 

Included in the examples/ directory of this distribution is a reasonably sophisticated program, 
NetViewer.java.  This program allows you to select a net from a list, whereupon it draws the selected net, 
and then allows you to edit the net and to enter finding information as well.  It illustrates how to attach 
mouse events to nodes, to parts of nodes (e.g., the belief-bars rows), and even to links.  If you need to 
build a more sophisticated graphical application for selecting nodes, entering findings, and such, you may 
wish to use this program as a starting point. 
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9.7 Miscellaneous Useful Features 

The NetPanel class supports the concept of a selection set, which is just a NodeList of nodes in the 
“hilited state” (see NodePanel.getDisplayMode).  Also, you may choose to display a subset of the nodes 
in a net using the setSubnet method.  

9.8 Feedback Wanted 

We would appreciate hearing whether you find the gui package useful and how you might like to see it 
evolve. 
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10 Special Topics 

10.1 Node Lists 

Many operations in intelligent computing require working with lists of variables, and when using Bayes 
nets that means working with lists of nodes, so it is not surprising that many Netica functions take node 
lists as arguments.  Netica’s node list class is NodeList, which extends java.util.Vector. 

10.2 Graph Algorithms 

The nodes and links of a Bayes net form a “graph”, as defined in graph theory.  Graph theory provides 
algorithms to efficiently find all the descendents of a node, or all its ancestors, connected nodes, Markov 
blanket, etc.  Netica very efficiently implements these algorithms, and makes them available with the 
Node method: 

  void getRelatedNodes (NodeList relatedNodes, String relation, NodeList nodeList); 

To use it, you pass  the relation you desire as a C string, and a node list to be filled.  Then the function 
puts all of the related nodes into the list.  For example, to find the Markov boundary of node_A, you 
could use: 

  NodeList mb = new NodeList (net); 
  node_A.getRelatedNodes (mb, "markov_boundary"); 

After execution, the list mb will contain all the nodes in the Markov boundary of node_A. 

The allowed relation strings are:  "parents", "children", "ancestors", "descendents", 
"connected", "markov_boundary", and "d_connected" (the singular version of each of these 
words is also acceptable, and does the same thing).  You can add certain modifiers (in any order) to the 
string containing the relation.  The allowed modifiers are: 

"append" means to add to the list that is passed in (otherwise that list is first emptied). 
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"union" means to add to the list that is passed in and remove all duplicates. 

"intersection" means to reduce the passed-in list to only the nodes that are in both the original 
passed-in list and the relation. 

"subtract" means to take the nodes that are in the relation away from the passed-in list. 

"include_evidence_nodes" is only relevant for "markov_boundary" and "d_connected".  
Without it the relation list will not contain any nodes with findings. 

"exclude_self" is only relevant for:  "ancestors", "descendents", "connected", and 
"d_connected".  Without it the relation list will also include the original node (generation 0). 

For example, to create a list of all the nodes that are both ancestors of node_A, and descendents of 
node_B, you could use: 

  NodeList ad = new NodeList (net); 
  node_A.getRelatedNodes (ad, "ancestors"); 
  node_B.getRelatedNodes (ad, "intersection, descendents"); 

If you want to find all the nodes that are related to a whole group of nodes, you use 
Net.getRelatedNodes().  It works the same as Node.getRelatedNodes(), except that  it takes a 
list of nodes as an extra parameter. 

Sometimes you don’t need a list of all the nodes bearing some relation to a certain node, you just want to 
know if that relation holds between two nodes.  For example, you may want to know if node A is an 
ancestor of node B.  You could use the function described above to generate the whole list of ancestors of 
B, and then check if A is a member, but that would be wasteful.  Instead, you call Node.isRelated(), 
like this: 

  if (node_A.isRelated ("ancestor", node_B)) ... 
 

10.3 User-defined Data 

Sometimes it is very useful to be able to attach your own data to Netica objects.  Netica doesn’t do 
anything with that data; it is just held until you ask for it back.  The types of Netica objects that you can 
attach data to are:  nodes (Node), nets (Net) and the global environment (Environ). 

There are two different ways of attaching data.  One is to attach to the Netica object a single Java object.  
That object can be whatever you wish, perhaps a large collection.  When the Netica object is duplicated or 
saved to file, the reference you have attached will be ignored.  Only one such arbitrary Java object can be 
attached to each Netica object.  The relevant methods for attaching and retrieving data in this way are:  
Node/Net/Environ.user().setReference() and Node/Net/Environ.user().getReference():  
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  void setReference (Object obj); 
  Object getReference (); 

The other way of attaching data to Netica objects is by “user fields”, with which you can attach as many 
data items as you wish to an object, each under its own name (i.e., “attribute-value”).  Your data will be 
duplicated if the node is duplicated, and when you save your net to file, Netica will include your data in 
the file.  The Environ class does not have these methods.  Representative prototypes are: 
 

  byte[] getBytes (String fieldName); 
  String getNthFieldName (int index); 
  double getNumber (String fieldName); 
  Object getObject (String fieldName); 
   String getString (String fieldName); 
   void removeField (String fieldName); 
   void setBytes (String fieldName, byte[] bytes); 
   void setNumber (String fieldName, double fieldValue); 
   void setObject (String fieldName, java.io.Serializable fieldValue); 
  void setString (String fieldName, String fieldValue); 
 

To set a user field you pass a name for the field and a reference to your data.  When you later call the 
method to recover your data, you pass in the name you gave it, and Netica will return you a newly 
constructed object identical to the original (except for its hashcode). 

If you wish to find all the user fields defined for some node or net, you can iterate through them with 
User.getNtFieldName() 

10.4 Sensitivity 

Of significant importance in Bayes net work is a measure of the independence between various nodes of 
the net.  Using just the link structure and d-separation rules, you can determine which nodes are 
completely independent of which other ones (see the “Graph Algorithms” section above), and how that 
changes as findings arrive.  However, dependence is a matter of degree, and using Netica’s sensitivity 
functions, you can efficiently determine how much an as yet unknown finding at one node will likely 
change the beliefs at another node. 

During diagnosis, you may wish to know which nodes will be the most informative in crystallizing the 
beliefs of the most probable fault nodes.  Obviously, that will change as findings arrive, so it may need to 
be recomputed at each stage.  In a net built for classification, you can determine which features are the 
most valuable for performing the classification (i.e. “feature selection”).  In an information gathering 
environment, you can identify which are the most important questions to ask at each point (to provide 
information on the variables of interest), based on the answers to questions already received, so as to 
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avoid asking unnecessary or irrelevant questions.  In real-world modeling, such as environmental 
modeling, you can determine which parts of the model most affect the variables of interest; thereby 
identifying which parts should be made the most carefully and accurately. 

Say you are interested in the beliefs of a particular node, which we call the target node (also known as the 
“target node”).  Then there are a set of other nodes (called the varying nodes), for which it may be 
possible to have findings, and you want to know how much those findings are likely to influence the 
beliefs of the target node. 

To use Netica’s sensitivity functions, you first create a Sensitivity object using the constructor: 

  Sensitivity (Node targetNode, NodeList varyingNodes, int whatFind); 
 

You pass it the target node targetNode, and a list of the varying nodes varyingNodes.  Later you will 
be able to use the Sensitivity object returned to find the sensitivity of targetNode to each of the 
nodes in varyingNodes.  You also pass what_find to indicate what type of sensitivity calculations you 
wish it to be able to perform, which should be VARIANCE_OF_REAL_SENSV if you wish to be able to call 
getVarianceOfReal, ENTROPY_SENSV  if you wish to be able to call getMutualInfo, or their bitwise-or to 
be able to use both.  Then you obtain the actual sensitivity numbers by calling one of: 

  double getMutualInfo (Node varyingNode); 
  double getVarianceOfReal (Node varyingNode); 
 

If the target node is discrete with no real number levels associated with the states, then the mutual 
information is the only function that can be used.  If the target node is a discretized continuous node, or a 
discrete node with a real number associated with each state, then the variance-of-real measure is the 
recommended measure, although you may wish to use mutual information in some situations.  The mutual 
information is the reduction in entropy of the target node belief distribution, due to a finding at the 
varying node (over each possible finding, weighted by the probability of obtaining that finding). 

When you call one of the two functions, it will return the sensitivity of the original targetNode (used in 
the construction of the Sensitivity) with respect to the varyingNode passed in.  The first time it is 
called, it takes longer to return, since it is calculating the results for all the varyingNodes that were used 
in the construction of the Sensitivity (because it can save time doing them all at once), but it 
remembers the results so subsequent calls are very fast (unless a finding or something else in the net 
changes, in which case it must re-calculate). 

Mutual information is symmetric (i.e., it has the same value when the target node and varying node are 
reversed), so you can use getMutualInfo() to efficiently find how much obtaining a finding at one 
node will likely effect the beliefs of all the rest of the nodes in the net. 

When you are finished using a Sensitivity object, you can “delete” it using  finalize(). 
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Currently Netica’s sensitivity analysis only works on Bayes nets, and not decision nets.  You can also use 
Netica Application to do sensitivity analysis by choosing Network → Sensitivity to Findings from the 
menu.  For more information on Netica’s calculation of sensitivity, contact support@norsys.com, and ask 
for the “Sensitivity” document. 

10.5 Stochastic Simulation 

Netica can be used to generate random cases (aka “synthetic data”), which are cases whose values follow 
the distribution represented by the Bayes net, including any findings that it has.  This synthetic data may 
be browsed by people to get a feel for the type of cases to expect, or used to test them on their predictive 
or diagnostic ability.  It can be used to learn other Bayes nets, or other machine learning representations, 
such as neural nets, decision trees or decision rules.  Perhaps its most valuable use is when the Bayes net 
is a physical model of a real-world situation, and the synthetic data provides stochastic simulations.  The 
output of those simulations can then be analyzed by other programs.  For example, the Bayes net may 
model a warehouse and distribution scheme, which can be tested under various conditions to check its 
performance.  In a similar vein the Bayes net may model a control system, economic system, political 
environment, computer network, etc. 

To generate a synthetic case, the method of Net to use is: 

 int generateRandomCase (NodeList nodeList, int method, double timeout); 
 

where the method argument determines which algorithm Netica uses (for example, forward sampling 
with rejection or by junction tree).  For an example of a small program using it, see the 
SimulateCases.java example program in the “Findings and Cases” chapter. 
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11 Equations 
The relation between a node and its parent nodes can be entered using an equation if desired. This 
eliminates the burden of building conditional probability tables (CPTs) manually. It is possible to use an 
equation for continuous or discrete nodes, and for probabilistic or deterministic relations. 

Equations are a kind of “short-hand” form of expressing a CPT.  Since Netica’s Bayesian inference 
usually requires that CPTs be available, equations must be converted to tables (by calling 
Node.equationToTable()) before compiling a net, or doing certain net transforms like absorbing 
nodes or reversing links.  Netica then uses the tables in the same way as if they had been entered directly. 

Sometimes Netica uses an equation directly, without the need for a table.  If findings are entered for all 
the parents of a node, and that node has a deterministic equation, then the node is given the exact value 
computed from the equation (which can then propagate to its children) during a deterministic propagation 
phase that is the first step of belief updating (see Node.calcValue() and Node.CalcState()).  
Having this phase increases both accuracy and speed, and can be useful for “preprocessing” input data.  
Another time Netica uses an equation directly is during stochastic simulation (calling 
Node.generateRandomCase() with method=FORWARD_SAMPLING). 

11.1 Simple Examples 

Here are some examples of using equations in Netica: 

Suppose X is a continuous variable representing the position of a moving object, and is dependent on its 
parent nodes: Velocity, Time, and Start position.  This equation could compactly express their 
relationship: 

X (Velocity, Time, Start) = Start + Velocity * Time 
 

Now suppose that the start position is zero, but that there is some uncertainty about the end position, 
given by the normal distribution with standard deviation S: 

  



78    NETICA  API   JAVA  VERSION  3.25 

p (X | Velocity, Time, S) = NormalDist (X, Velocity * Time, S) 
 

Here is an example of a discrete node Color with states red, blue and green.  As a parent, it has the 
discrete node Taste with states sour, salty and sweet.  The below is a deterministic equation giving Color 
as a function of Taste, which demonstrates the use of the conditional operator ?: 

Color (Taste) = 
 Taste==sour?  blue:    Taste==sweet? red:  
 Taste==salty? green:   gray 
 

Finally, consider a discrete node Color, which is indicator taking on the values red or blue depending on 
whether the parent node Taste is sweet or not, but that works imperfectly: 

 
p (Color | Taste) = 
 (Taste==sweet) ? (Color==red ? 0.9 : 0.1):  0.5 

For more examples, see the “Specialized Examples” section below. 

11.2 Equation Syntax 

Netica equations follow most of the usual standards for mathematical equations, and are similar to 
programming in Java, C or C++.  The usual mathematical operators (+, -, *, /, etc.), and the usual 
functions (min, abs, sin, etc.) can be used, parenthesis are used for grouping, and numeric constants are in 
their usual form (e.g.  3,  -4.2,  5.3e-12). 

Left-Hand Side:  For a deterministic node, the part of an equation to the left-hand side of the equals 
symbol consists of the name of the node, an open parenthesis, a list of the names of the parents separated 
by commas, and a close parenthesis (if you have defined link names, you must use those instead of parent 
names).  For instance, if the equation is for node Position, and the parents of Position are Velocity, Time 
and Mode, the left hand side could be: 

Position (Velocity, Time, Mode) = ... 

Note that the spaces are not required, there may be more spaces if desired, and the parents can be in any 
order. 

For probabilistic nodes (i.e. "chance nodes"), the left-hand side consists of a lower case "p", an open 
parenthesis, the name of the node, a vertical bar, a list of the names of the parents (or link names) 
separated by commas, and a close parenthesis.  If the node mentioned above had been a probabilistic 
node, the left hand side of its equation could be: 

p (Position | Velocity, Time, Mode) = ... 
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Right-Hand Side:  The right-hand side of an equation may consist of numbers, state names, conditionals, 
variables (i.e. parent nodes), constant nodes, and built-in functions, constants or operators.  Probabilistic 
equations will normally also contain the node the equation is for on the right-hand side (possibly in 
several places). 

Nodes Allowed:  The only nodes which may be mentioned in an equation are:  the node the equation 
describes, its parents, and any constant node. 

Whitespace:  As many spaces or line breaks as desired may be placed between any two symbols. 

Comments:  Comments may be embedded in equations, and they will be ignored by Netica.  Everything 
between  /*  and  */  will be interpreted as a comment, as will everything between  //  and the end of the 
line. 

All Values:  If the equation is for a probabilistic node, its right-hand side must provide a probability for 
all the node’s possible values (so the name of the node must appear there at least once).  For example, if 
node Color (with states red, orange, yellow) has parent Temp (with states low, med, high), its equation 
could be: 

p (Color | Temp) =  
Temp == high  ? (Color==yellow ? 1.0 : 0.0) : 
Temp == med   ? (Color==orange ? 1.0 : 0.0) : 
Temp == low   ? (Color==orange ? 0.2 : Color==red ? 0.8 : 0.0) : 0 

If you use the built-in distributions (such as NormalDist), the above rule is automatically taken care of. 

One exception to the above rule is if a node is boolean.  Then only the probability for the true state need 
be given.  For example, if node It_Falls is boolean, its equation could be: 

p (It_Falls | Weight, Size) =  
Weight/Size > 10 ? 0.10 : 
Weight/Size > 5  ? 0.03 :  
                   0.01 

 

Differences between standard Java (or C/C++) equation syntax:   The Netica equation syntax is the 
same as in the Java (and C and C++) programming languages, except the part to the left of the assignment 
operator (=) is different, and no semicolon is required at the end of the equation. 

Furthermore, the Java/C/C++ bitwise operators (such as  &,  |,  ~,  ^) are not available in Netica, but the 
logical operators  &&,  ||,  !  are.  In addition, Netica has a logical ‘xor’ function.  A final difference is that  
the bitwise xor operator  ^  of Java/C/C++  is instead used as the power operator by Netica (thus 2^3=8). 

All of the C Standard Library math functions (sin, log, sqrt, floor, etc.) are available and use the same 
names. 
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11.3 Equation Conditionals 

Suppose continuous node X has the parents Y and B.  If you wanted to give P(X|Y) a different equation 
involving X and Y for different values of B, you could write a conditional statement using the ? and : 
operators, like this: 

p(X|Y,B) = 

   (B < 2) ? NormalDist (X, 3 + Y, 1) : 

   (B < 6) ? NormalDist (X, 2 + Y, 3) : 

             UniformDist (X, 0, 10) 

The conditions are evaluated in order, so the first covers all cases where B < 2, the second covers cases 2 
≤ B < 6, and the last covers the remaining cases (i.e. B ≥ 6).  So, if B is less than 2, X is distributed 
normally with mean 3+Y;  if  it is between 2 and 6 then the mean is 2+Y; and if it is over 6 then X is 
distributed uniformly. 

If there are more parents, this sort of construct can be nested to provide a tree structure of possible 
contingencies. 

Here are a couple more examples.  They show a way to condition over the states of a discrete node: 

p(X|Y,B) = 

(B == yellow) ? NormalDist (X, 2, sqrt (Y)) : 

(B == orange) ? NormalDist (X, 4, Y) : 

(B == red)    ? NormalDist (X, 6, Y ^ 2) : 0 

 

p(X|B) = 

member (B, CA, TX, FL) ? NormalDist (X, 3, 1) : 

member (B, MA, WA)     ? NormalDist (X, 5, 1) : 

member (B, NY, UT, VA) ? NormalDist (X, 7, 2) : 

                         UniformDist (X, 0, 10) 

Notice that the “fall through” case of the first example above is simply a 0.  This indicates that the 
designer is counting on B to be one of yellow, orange or red.  If B ever has another state, then when 
Netica is converting the equation to a table it will give a warning message that “for n/N conditions, no 
nonzero probability was discovered by sampling” (providing no sampling uncertainty is being added). 

In the last example, the fall through case gives a uniform distribution.  If extra states are later added to B, 
then they will just fall through and use the uniform distribution. 
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11.4 Converting an Equation to a Table 

As mentioned earlier, all equations must be converted to tables before compiling a net or doing net 
transforms like absorbing nodes or reversing links.  The procedure is done by the following three steps:  

1. If the node, or any of its parents, is a continuous node that has not yet been discretized, then call 
Node.setLevels() to discretize it.  The finer the discretization, the more accurate, but the 
bigger the tables will be. 

2. If the node doesn’t already have its equation, call Node.setEquation(), passing in the equation 
string. 

3. Finally, call Node.equationToTable().  Note that if you later change the equation for the 
node, or the discretization of the node or of any of its parents, or the finding of a constant node 
referred to by the equation, you must repeat this step before the changes will take effect.  With 
the parameters passed to this function you can control the number of samples in any Monte 
Carlo integration that is required, whether the final CPT will include uncertainty due to the 
sampling process, and you can blend tables with those produced by learning from data, other 
equations, or manual CPT entry into Netica Application. 

If Netica reports errors in the above steps, it is often helpful to debug the equation using Netica 
Application.  If there is a problem with the syntax of an equation, when you enter it into Netica 
Application’s node property dialog box, the cursor will be placed on the problem while the error message 
is displayed.  From Netica Application’s menu, you can choose “Equation To Table” to check if there is 
going to be any problem with the equation, and conveniently view the resulting CPT to see if it is what 
you expect. 

11.5 Equations and Table Size 

The size of the table generated is the product of the number of states of the node with the numbers of 
states of each of its parent nodes.  So if a node has many states, or many parents, then the tables may be 
very large, and Netica may report that it doesn’t have enough memory for the operation.  You can 
alleviate the problem by eliminating unnecessary parents, introducing intermediate variables, or using 
more course discretizations (perhaps have more than one node for the same variable, with different 
discretizations depending on which node it is a parent for).  If Netica creates extremely large tables, it 
may starve other processes of memory, or result in very slow virtual memory hard disk activity, so you 
might want Netica to instead just report that it doesn’t have enough memory.  In that case, you can limit 
the amount of memory available to Netica with Environ.setMemoryUsageLimit(). 
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11.6 Link Names 

In the simplest way of writing equations, the names of the parent nodes appear in the equation.  However, 
you might want a more modular representation, so that you can disconnect some of the parent nodes and 
hook the node up to new parents without having to change all the parent names within the equation. 

Or perhaps you duplicate the node to use with new parents.  Or you put the node in a network library 
without any parents.  Or you want to copy the equation from one node to another, without changing all 
the node names. 

The way to do that is to use input names, sometimes called link names.  They provide an argument name 
for each link entering the node (and therefore a proxy for each parent node).  You can set them with 
Node.setInputName().  You refer to them in your equation in exactly the same way you would the 
corresponding parent name.  When a parent is disconnected, the link name will remain. 

Note. If link names are defined for a node, they must be used instead of the parent names.  

11.7 Referring to States of Discrete Nodes 

To refer to the states of a discrete or discretized node, You can use the state names of a discrete node as 
constants in an equation. For example, if node Color has states red, green, blue and yellow, and node 
Temperature has states cool and warm, you could write: 

Temperature (Color)  =  member (Color, red, yellow) ? warm : cool 

Each state name only has meaning relative to the node it’s for.  Usually when you use a state name, 
Netica can identify that node from context.  However, if Netica doesn’t know which node a state name 
refers to (e.g. it gives an unknown value error message), you can indicate which node by following the 
state name with a double-dash and then the name of the node.  Continuing with the above example, if a 
new node Switch could take on the values 0, 1 and 2, you could write: 

Color (Switch) = select0 (Switch, red--Color, yellow, blue) 

The “--Color” was not required on “yellow” and “blue”, because the context was carried over from “red--
Color”, but it could be put there as well. 

If a discrete node has a numeric value associated with each state (see Node.setLevels()), that numeric 
value can be used in an equation instead of the state name. 
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Alternatively, you can use the state index (numbering starts at 0) preceded by a hash # character.  
However, it is recommended to use the names or values, because they are more readable, less error-prone 
and more robust to future changes to the node, such as the adding or re-ordering of states. 

11.8 Constant Nodes as Adjustable Parameters 

Sometimes it is useful to have an equation parameter that normally acts as a fixed constant, but which you 
can change from time to time.  That is the purpose of a constant node. 

You create a constant node by addinga nature node to the network, and then converting it to a constant 
node by calling Node.setKind().  You can also set other characteristics of a constant node in the same 
way as any other node, such as giving it state names.  To set or change the value of a constant node, enter 
the value in the same way as you would enter a finding. 

You can refer to the value of a constant node anywhere in any node’s equationby using the constant 
node’s name.  It should not appear in the argument list on the left hand side of the = symbol.  No link is 
required. 

When you convert the equation to a table, the value of any constant nodes it references will be used.  If 
you change the value of a constant node, you must rebuild the table for the change to take effect. 

11.9 Tips on Using Equations 

• It is often helpful to debug equations using Netica Application.  If there is a problem with the 
syntax of an equation, it leaves the cursor on the problem while it displays an error message.  You 
can choose “Equation To Table” from the menu to check that, and easily view the resulting CPT 
to see if it is what you expected. 

• The tables generated by equations may result in large files (and therefore slow reading), so you 
may want remove the nodes’ tables with Node.deleteTables(), before saving it to file.  Later, 
when you restore the net from file, you call Node.equationToTable() to fully restore them. 

• If you need to define intermediate variables to simplify the equations, implement them as new 
(intermediate) nodes.  
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11.10 Specialized Examples 

State Comparisons:  Suppose the states of node Source are CA, TX, FL, BC and NY.  The states of node 
Dest are TX, NY, MA and UT.  We want to know if cross-border travel is required to transport from 
Source to Dest, and that is indicated by the boolean node Travel.  The equation below works even though 
nodes Source and Dest have different sets of states, and in a different order. 

Travel (Source, Dest) = (Source != Dest) 

Additive Noise:  Say you want to represent something like: 
x1 = x2 + gauss (0, 0.2)    which could indicate that x1 is the same as x2, but with the addition of gaussian 
noise having mean 0 and s = 0.2.  You could do this by defining a new node x3, and setting the equations 
of x1 and x3 as: 

X1 (X2, X3) = X2 + X3 

p(X3) = NormalDist (X3, 0, 0.2) 

Multiple Discretizations:  Sometimes it is useful to use more than one node to represent a continuous 
variable, and discretize each differently.  For example, the more course one may be a parent for another 
node whose CPT would be too big with a finer discretization, while the finer one would serve as a parent 
for nodes requiring more accuracy.  Put a link from the finer node to the courser, and give the courser 
node an equation like: 

X5 (X20) = X20 

Noisy-Or:  To create a noisy-or node, just create a regular boolean nature node, put links to it from the 
possible causes, give it a noisy-or equation, and use that to build its CPT. 

For example, if C1, C2 and C3 are boolean nodes representing causes of boolean node E, and there are 
links from each Ci to E, then E could have the noisy-or equation: 

p (E | C1, C2, C3) =  
NoisyOrDist (E, 0, C1, 0.5, C2, 0.3, C3, 0.1) 

For its meaning, see the NoisyOrDist description.  The causes, and even the link parameters, can be more 
complex expressions.  For example: 

p (Bond | Temperature, BackTemp, Pressure, Switch, Eff)= 
NoisyOrDist (Bond, 0.001, 
Temperature > BackTemp, 0.5, 
Pressure == high, 0.3, 
Switch, 0.9 * Eff)  

For more information on using Netica’s Noisy-Or, Noisy-And, Noisy-Max and Noisy-Sum functions, 
contact Norsys for the “Noisy Or, Max, Sum” document. 
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11.11 Equation Constants, Operators, and Functions 

A: Built-in Constants 

The following constants may be used in equations: 

 pi      = 3.141592654 

 deg     = radian per degree = pi / 180 

If you wish to have the constant  e  (= 2.7182818) in your equation, use exp(1).  

 

B: Built-in Operators 

Both the functional and the operator notations shown below are accepted. 
 

 
Functional Notation       Operator Notation 
 
neg (x) - x 
not (b) ! b 
 
equal (x, y) x == y 
not_equal (x, y) x != y 
approx_eq (x, y) x ~= y 
less (x, y) x < y 
greater (x, y) x > y 
less_eq (x, y) x <= y 
greater_eq (x, y) x >= y 
 
plus (x , x , ... xn) x  + x  + ... + xn 1 2 1 2

minus (x, y) x - y 
mult (x1, x2, ... xn) x1 * x2 * ... * xn 
div (x, y) x / y 
mod (x, base) x % base 
power (x, y) x ^ y 
and (b , b , ... b ) b1 && b2 && ... && bn 1 2 n

or (b1, b2, ... bn) b1 || b2 || ... || bn 
if (test, tval, fval) test ? tval : fval 

 

C: Built-in Functions 

Netica contains an extensive library of built-in functions which you can use in your equations. 

The probability distribution functions all have a name that ends with "Dist" (e.g. NormalDist).  Their first 
argument is always the node for which the distribution is for.  So if node X has parent m, you could write: 
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 P (X | m) = NormalDist (X, m, 0.2) 

to indicate that X has a normal (Gaussian) distribution with mean given by parent m, and a standard 
deviation of 0.2. 

Common Math 
 

 
abs (x) absolute value 
sqrt (x) square root (positive) 
exp (x) exponential (e ^ x) 
log (x) logarithm base e 
log2 (x) logarithm base 2 
log10 (x) logarithm base 10 
sin (x) sine 
cos (x) cosine 
tan (x) tangent 
asin (x) arc sine 
acos (x) arc cosine 
atan (x) arc tangent 
atan2 (y, x) atan(y/x) but considers quadrant 
sinh (x) hyperbolic sine 
cosh (x) hyperbolic cosine 
tanh (x) hyperbolic tangent 
floor (x) floor   (highest integer ≤ x) 
ceil (x) ceiling (lowest  integer ≥ x) 
integer (x) integer  part of number (same sign)  
frac (x) fraction  part of number (same sign)  
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Special Math 
 

 
round (x) 
roundto (dx, x) 
approx_eq (x, y) 
eqnear (reldiff, x, y) 
clip (min, max, x) 
sign (x) 
xor (b1, b2, ... bn) 
increasing (x , x , ... x ) 1 2 n

increasing_eq (x1, x2, ... xn) 
min (x1, x2, ... xn) 
max (x , x , ... x ) 1 2 n

argmin0/1 (x0, x1, ... xn) 
argmax0/1 (x0, x1, ... xn) 
nearest0/1 (val, c , c , ... c ) 0 1 n

select0/1 (index, c0, c1, ... cn) 
member (elem, s1, s2, ... sn) 
factorial (n) 
logfactorial (n) 
gamma (x) 
loggamma (x) 
beta (z, w) 
erf (x) 
erfc (x) 
binomial (n, k) 
multinomial (n1, n2, ... nn) 
 

 
Continuous Probability Distributions 

 
 
UniformDist (x, a, b) 
TriangularDist (x, m, w) 
Triangular3Dist (x, m, w , w ) 1 2

TriangularEnd3Dist (x, m, a, b) 
NormalDist (x, μ, σ) 
LognormalDist (x, η, φ) 
ExponentialDist (x, λ) 
GammaDist (x, α, β) 
WeibullDist (x, α, β) 
BetaDist (x, α, β) 
Beta4Dist (x, α, β, c, d) 
CauchyDist (x, μ, σ) 
LaplaceDist (x, μ, β) 
ExtremeValueDist (x, μ, σ) 
ParetoDist (x, a, b) 
ChiSquareDist (x, ν) 
StudentTDist (x, ν) 
FDist (x, ν1, ν2) 
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Discrete Probability Distributions 
 

 
SingleDist (k, c) 
DiscUniformDist (k, a, b) 
BernoulliDist (b, p) 
BinomialDist (k, n, p) 
PoissonDist (k, m) 
HypergeometricDist (k, n, s, N) 
NegBinomialDist (k, n, p) 
GeometricDist (k, p) 
LogarithmicDist (k, p) 
MultinomialDist (bc, n, k1, p1, k2, p2, ... km, pm) 
NoisyOrDist (e, leak, b1, p1, b2, p2, ... bn, pn) 
NoisyAndDist (e, inh, b1, p1, b2, p2, ... bn, pn) 
NoisyMaxTableDist (...) 
NoisySumTableDist (...) 
 

  

11.12 Special Math and Distribution Functions Reference 
  

Legend:   = Discrete Probability Distribution   (the first argument is a discrete variable that the distribution 

is over) 

   = Continuous Probability Distribution   (the first argument is a continuous variable that the 

distribution is over) 

 

approx_eq (x, y)       x ~= y = eqnear (2e-5, x, y) 
 where  x and y are unrestricted reals 

Returns TRUE iff x is equal to y, within a small relative tolerance. 

Usually the operator form of this function is most convenient:    x ~= y 

It is meant for comparing computed real number values that might not be exactly equal due to slight numerical inaccuracies.  

To have control of the tolerance, use eqnear.  

argmax0 (x0, x1, ... xn) = i  s.t. (xi ≥ xj) for all j 
argmax1 (x1, x2, ... xn) 

 where  xi are unrestricted reals 

Returns the index (position in list) of the argument with the highest value.  If there are several with the same highest value, then 
the index of the first occurrence will be returned.  The first argument has index 0 if argmax0 is used, or index 1 if argmax1 is 
used.  At least one argument must be passed.  See also max, argmin, select. 

Example:  argmax0 (1, -6.6, 3.4, 1.26, 3.4)   returns 2 
  argmax1 (1, -6.6, 3.4, 1.26, 3.4)   returns 3 
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argmin0 (x0, x1, ... xn) = i  s.t. (xi ≤ xj) for all j 
argmin1 (x1, x2, ... xn) 
 where  xi are unrestricted reals 

Returns the index (position in list) of the argument with the lowest value.  If there are several with the same lowest value, then 
the index of the first occurrence will be returned.  The first argument has index 0 if argmin0 is used, or index 1 if argmin1 is 
used.  At least one argument must be passed.  See also min, argmax, select. 

Example:  argmin0 (10, 6.6, 3.4, 126, 3.4)   returns 2 
  argmin1 (10, 6.6, 3.4, 126, 3.4)   returns 3  

BernoulliDist (b, p)   = b ? p : 1 - p 

 Required:  0 ≤ p ≤ 1       b boolean  

This is the distribution for a single "Bernoulli trial", in which p is the probability of an outcome labeled "success" occurring.  b is 
a boolean that is true if the “success” occurs.  An example is flipping a coin and checking for the event of heads appearing.  

_BernoulliDist  

This is a distribution that Netica uses internally to represent the Bernoulli distribution (BernoulliDist).  If you get an error 
message saying there was an error evaluating  _Bernoulli (k, p), where k and p are numbers, then your equation is supplying 
illegal values, even if you never explicitly used _Bernoulli in  your equation. 

For instance, if your equation for boolean B is   P(B|x) = x / 10   and values of x can go up to 11, then _Bernoulli (1, 1.1) will be 
illegal, since you are supplying 1.1 as a probability (and Netica can’t normalize it, since no probability for B being false is given). 

beta (z, w) = gamma (z) gamma (w) / gamma (z + w) 

 where:  z > 0      w > 0 

Returns the beta function of z and w.  BetaDist is the beta probability distribution, which is based on the beta function.  

BetaDist (x, α, β)   = xα-1 (1-x)β-1/ beta (α, β) 

 Required:   α > 0       β > 0 

The beta distribution over x.  Almost any reasonably smooth unimodal distribution on [0,1] can approximated to some degree by 
a beta distribution (if its not on [0,1], see Beta4Dist). 

Beta4Dist (x, α, β, c, d)   = BetaDist ((x - c) / (d - c), α, β) 

 Required:  0 ≤ x ≤ 1   α > 0    β > 0 

Also known as the “Generalized Beta Distribution”, this is a beta distribution that has been shifted and scaled, so that the pdf has 
nonzero values from x = c to x = d, instead of from x=0 to x=1.  This distribution has great flexibility to roughly fit 
almost any smooth, unimodal distribution with no tails (i.e., only nonzero over a finite range). 

binomial (n, k) = n! / (k! * (n-k)!) 

 Where:  0 ≤ k ≤ n      n and k are integers 

Returns the binomial coefficient (n k).  That is the number of different k-sized groups that can be drawn from a set of n distinct 
elements.  See also the multinomial function.   

BinomialDist is the binomial probability distribution, which is based on the binomial coefficient.. 

BinomialDist (k, n, p)   = binomial (n, k) p k (1-p) n-k 

 Required:   k and n are integers,   0 ≤ k ≤ n,   and  0 ≤ p ≤ 1 

A "binomial experiment" is a series of n independent trials, each with two possible outcomes (often labeled "success" and 
"failure"), with a constant probability, p, of success.  The total number of successes, k, is given by the binomial distribution. 
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If there are more than two possible outcomes, use the multinomial distribution (MultinomialDist).  If the sampling is 
without replacement, use the hypergeometric distribution (HypergeometricDist) 

For large n, and p not too close to 0 or 1, the binomial distribution can be approximated by a normal distribution (NormalDist) 
with mean m = n p, and variance = n p (1-p).  For large n, and p close to 0, it can be approximated by a Poisson distribution 
(PoissonDist) with parameter λ = n p.  As n → ∞ these are the limiting distributions (providing p=constant in the normal 
case, and p → 0, np=constant in the Poisson case).  

CauchyDist (x, μ, σ)   = 1 / (π σ (1 + ((x-μ)/σ)2)) 

 Required:    σ  >  0 

Although real-world data rarely follows a Cauchy distribution, it is useful because of its unusualness.  For example, although it is 
symmetric about μ (which is therefore its median and mode), it doesn't have a mean (or variance, etc.) because the appropriate 
integrals don't converge.  The C(0,1) distribution is also Student's t distribution with degrees of freedom = 1. 

ChiSquareDist (x, ν)   = x(ν/2-1) / [exp (x/2) 2(ν/2) gamma (ν/2)] 

 Required:  x ≥ 0      ν > 0     ν is an integer 

This is the distribution of  Z1
2 + Z2

2 + ... Zν
2  where Zi are independent standard normal (NormalDist) variates.     

ν is usually called the “degrees of freedom” of the distribution. 

clip (min, max, x) = (x < min) ? min : (x > max) ? max : x 

 where  min ≤ max 

Returns x, unless it is less than min (in which case it returns min), or more than max (in which case it returns max).               
See also the functions: min, max. 

DiscUniformDist (k, a, b)   = 1 / (b - a + 1) 

 Required:     a ≤ b k, a, b are integers 

This distribution represents the situation where k has an equal probability of taking on any of the integer values from a to b 
inclusive (where a and b are integers).  If k were continuous, then it would be a continuous uniform distribution. 

eqnear (reldiff, x, y) = ( | X - Y | / max (|X|, |Y|)  ≤  reldiff ) 

 where reldiff ≥ 0 

Returns TRUE iff x is equal to y, within reldiff.   To use a tiny built-in value for reldiff, suitable for numerical floating 
point inaccuracy, use approx_eq.  

erf (x) = 
π
2

  ∫
x

0

2 dt )(-t exp

 where x is an unrestricted real 

This returns the error function of x.  It is useful for calculating integrals of the normal distribution function (NormalDist).      
If x is large, you can obtain better accuracy with erfc. 

erfc (x) = 1 – erf(x) 

 where x is an unrestricted real 

This returns the complementary error function of x.  It is useful for calculating an integral of a tail of a normal distribution 
function (NormalDist).  It would be easy enough to just use 1-erf(x), but this provides better numerical accuracy when x 
is large (so erf(x) is very close to 1). 

ExponentialDist (x, λ)   = λ exp (- λ x) 

 Required:     λ > 0 
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If events occur by a Poisson process, then the time between successive events is described by the exponential distribution (where 
λ is the average number of events per unit time).  

ExtremeValueDist (x, α, β)   = exp (-exp (-(x-α)/β) - (x-α)/β) / β 

 Required:     β > 0 

This distribution is the limiting distribution for the smallest or largest values in large samples drawn from a variety of 
distributions, including the normal distribution    Also known as the "Fisher-Tippet distribution", "Fisher-Tippet Type I 
distribution" or the "log-Weibull distribution". 

FDist (x, ν1, ν2)    

 Required:    ν  > 0   ν2 > 0 

The ratio of two chi-squared variates X1 and X2, each divided by their degrees of freedom: (X1/ν1)/(X2/ν2) follows an F-
distribution.   Also known as "Snedecor's F distribution", "Fisher-Snedecor distribution", "F-ratio distribution" and " variance-
ratio distribution ".  

factorial (n) = n (n – 1) (n – 2) ... 1 

 where  n ≥ 0      n is an integer 

Returns the factorial of n, which is the product of the first n integers. 

factorial(n) is often written as n! 

factorial(0) = 1 

Even fairly small values of n (around 170) can cause factorial to overflow.  For that reason calculations with the factorial 
function are often done using the logarithm of the results, for which you can use logfactorial. 

If n is not an integer you may want to use the gamma function, which for integer values is related to factorial by:  factorial 
(n) = gamma (n + 1)   but which is also defined for non-integer values.  

gamma (x)  

 where  x ≥ 0 

Returns the gamma function of x. 

The gamma function is normally defined for negative values of x as well, but Netica cannot compute these. 

Don’t confuse this function with GammaDist, the gamma probability distribution. 

Even fairly small values of x (around 170) can cause gamma to overflow.  For that reason calculations with the gamma function 
are often done using the logarithm of the results, for which you can use loggamma. 

For integer values of x, the gamma function is related to the factorial function by:  factorial (n) = gamma (n + 1).  

GammaDist (x, α, β)   = xα-1 e-x/β / (gamma(α) βα) 

 Required:   α > 0         β > 0 

If events occur by a Poisson process, then the time required for the occurrence of α events is described by the gamma distribution 
(where β is the average time between events). 

For α = 1, this is the exponential distribution (ExponentialDist) with λ = 1 / β.  For β = 2, this is the chi-square 
distribution (ChiSquareDist) with degrees of freedom ν = 2 α.  

GeometricDist (k, p)   = p (1-p)k 

 Required:      0 < p ≤ 1        k is an integer 

This distribution describes the number of Bernoulli trials (independent trials, with outcomes labeled "success" or "failure", and 
constant probability p of success) before the first success occurs (i.e., includes only the failure trials).  An example would be the 
number of coin flips resulting in tails before the first head is seen. 
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Situations where Bernoulli trials are repeated until the nth success are called "negative binomial experiments", and the geometric 
distribution is a special case of the negative binomial distribution (NegBinomialDist) with n = 1. 

HypergeometricDist (k, n, s, N)  = binomial (s,k) binomial (N-s, n-k) / binomial (N,n) 

 Required:      N ≥ 0   0 ≤ n ≤ N   0 ≤ s ≤ N  k, N, n and s are integers 

This provides the probability that there are k "successes" in a random sample of size n, selected (without replacement) from N 
items of which s are labeled "success" and N-s labeled "failure". 

It is used in place of the binomial distribution (BinomialDist) for situations which sample without replacement. 

increasing (x1, x2, ... xn) = (x1 < x2) && (x2 < x3) && ... && (xn-1 < xn) 

 where  xi are unrestricted reals 

Returns TRUE iff each xi is greater than the previous one.  If you wish the test to be “greater than or equals”, use 
increasing_eq.  

increasing_eq (x1, x2, ... xn) = (x1 ≤ x2) && (x2 ≤ x3) && ... && (xn-1 ≤ xn) 
 where  xi are unrestricted reals 

Returns TRUE iff each xi is greater than the previous one.  If you wish the test to be just “greater than”, use increasing.  

LaplaceDist (x, μ, β)   = (1/(2β)) exp (- |x-μ|/β) 

 Required:    β > 0 

Its pdf is two exponential distributions spliced together back-to-back. The difference between two iid exponential distribution 
random variables follows a Laplace distribution.  Also known as the "double exponential" distribution. 

LogarithmicDist (k, p)  = -(p^k)/ (k log (1-p)) 

 Required:      0 < p < 1     k is an integer 

Also known as the "logarithmic series distribution". 

logfactorial (n) = log (n (n – 1) (n – 2) ... 1) 

 where  n ≥ 0      n is an integer 

Returns the natural logarithm of the factorial of n, that is:  log (n!). 

You could also use the factorial function, but this helps to avoid overflow when n is large (>170). 

If n is not an integer you may want to use the loggamma function, which for integer values is related to logfactorial by:  
logfactorial (n) = loggamma (n + 1)   but which is also defined for non-integer values.  

loggamma (x) = log (gamma (x)) 

 where  x ≥ 0 

Returns the natural logarithm of the gamma function of x. 

It may be used to avoid overflow when x is large.  The gamma function is normally defined for negative values of x as well, but 
Netica cannot compute these.  

LognormalDist (x, ξ, φ)   = N (log (x), ξ, φ) / x, where N is the “normal distribution” 
 = (1 / [x φ sqrt(2π)]) exp (-[(log(x) - ξ) / φ]2 / 2) 
 Required:     φ > 0 

The lognormal distribution results when the logarithm of the random variable is described by a normal distribution 
(NormalDist).  This is often the case for a variable which is the product of a number of random variables (by the central limit 
theorem).   Notice that the ‘n’ of Lognormal is not capitalized, indicating that this is not the same as the logarithm of the normal 
distribution. 
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max (x1, x2, ... xn) = xi s.t. (xi ≥ xj) for all j 

 where  xi are unrestricted reals 

Returns the maximum of x1, x2, … xn. 

At least one argument must be passed.  If you just want the index of the maximum (i.e. its position in the list), use argmax.    
See also min. 

Example:  max (-10, 6.6, 3.4, -126, 3.4)   returns 6.6  

member (elem, s1, s2, ... sn) = (elem == s1) || (elem == s2) || ... || (elem == sn) 

 where  elem and all si must be the same type 

Returns TRUE iff one of the si arguments has the same value as elem..  See also:  nearest, select 

Examples:  member (1, -6, 3, 1, 3)  returns TRUE 
    member (C, blue, red)  and C = red  returns TRUE 

min (x1, x2, ... xn) = xi s.t. (xi ≤ xj) for all j 
 where  xi are unrestricted reals 

Returns the minimum of x1, x2, … xn. 

At least one argument must be passed. 

If you just want the index of the minimum (i.e. its position in the list), use argmin.   See also max. 

Example:  min (10, 6.6, 3.4, 126, 3.4)   returns 3.4  

multinomial (n1, n2, ... nn) = (n1 + n2 + ... nn)! / (n1! * n2! * ... nn!) 

 where  ni ≥ 0         ni are integers 

Returns the number of ways an (n1+n2+…nn) sized set of distinct elements can be partitioned into sets of size n1, n2, … nn.  
If partitioning into only two sets, this is the same as binomial. 

MultinomialDist (bc, n, k1, p1, k2, p2, ... km, pm)    

 Required:   n >= 0    ki >= 0    0 <= pi <= 1    sum pi != 0        bc boolean   n, ki integer 

The multinomial distribution is a generalization of the binomial distribution to the situation where there are not just two outcomes 
(usually labeled "success" and "fail"), but rather m outcomes, each having probability pi (i=1..m), and we are interested in the 
number of occurrences of each outcome (ki), given that a total of n trials are performed. 

To create a multinomial distribution between the ki and n nodes, first add to the net a new boolean node, in this example called 
bc.  Then add links from the nodes of all the non-fixed parameters (usually n and all ki) to node bc.  At node bc, put an 
equation with MultinomialDist, and convert the equation to a table.  Finally, give node bc a  finding of true. 

Normally the sum of pi is one, but Netica will just normalize the pi if that is not the case. 

If m is 2, then k2 is deterministically determined by k1 (i.e., k2 = n - k1), and k1 is distributed by BinomialDist. 

Each of the ki separately has a binomial distribution with parameters n and pi, and because of the constraint that the sum of the 
ki's is n, they are negatively correlated.  

The Dirichlet distribution is the conjugate prior of the multinomial in Bayesian statistics.  

For assistance on using this function, contact Norsys (support@norsys.com).  

nearest0 (val, x0, x1, ... xn) = i s.t. (|val - xi| ≤ |val - xj|) (xi ≥ xj) for all j 
nearest1 (val, x1, x2, ... xn) 

 where  val and xi are unrestricted reals 
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Returns the index (position in list) of the argument with the value closest to val (as measured by the absolute value of the 
difference).  If there are several with the same smallest difference, then the index of the first occurrence will be returned.  The 
first x argument has index 0 if  nearest0  is used, or index 1 if  nearest1  is used. 

Must be passed at least 2 arguments (val and an x).   See also:  member 

Example:  nearest0 (1, 1, 3.4, 1, 3.4)      returns 0 
  nearest1 (5e3, -6.6, -3.4, 126)   returns 3  

NegBinomialDist (k, n, p)   = binomial (n+k-1, k) pn (1-p)k 

 Required:   0 ≤ n    0 < p ≤ 1      k and n are integers 

The negative binomial distribution is the distribution of the number of failures that occur in a sequence of trials before n 
successes have occurred, in a Bernoulli process (independent trials, with outcomes labeled "success" or "failure", and constant 
probability p of success). 

The limit of a negative binomial distribution as  n → ∞, (1-p) → 0, n(1-p) → λ, is a Poisson distribution with 
parameter λ.  

If n = 1, then this distribution is just the geometric distribution.  

NoisyAndDist(e,inh,b1,p1,... bn,pn)  = P(e) = (1-inh) product i=1 to n (bi? 1: (1-pi)) 

 Required:  0 ≤ pi ≤ 1     0 ≤ inh ≤ 1     e, bi boolean 

Use this distribution when there are several possible requirements for an event, and each has a probability that it will actually be 
necessary.  Each of the necessary requirements must pass for the event to occur.  Even then there is a probability (given by inh) 
that the event may not occur (make inh zero to eliminate this). 

Each bi is a booleanvariable, which when TRUE indicates a requirement passed.  e  is also a boolean, which indicates whether the 
event occurs.  Each of the pi are the probability that bi will be required to cause  e. 

If  inh  is zero, and only one possible requirement is FALSE, say bk, then the probability for  e  is  1- pk.  If more possible 
requirements are FALSE, the probability will be lower.  And if  inh  is nonzero, the probability will be lower.  Reducing a pi 
always results in the same or higher P(e). 

pi can be considered the “strength” of the relation between e and bi, with zero indicating independence (link could be removed), 
and 1 indicating maximum effect.    See also NoisyOrDist. 

NoisyMaxDist(...)  
NoisySumDist(...)  
For documentation, contact Norsys to obtain the document titled “Noisy Or, Max, Sum”. 

NoisyOrDist(e,leak,b1,p1,... bn,pn)   = P(e) = 1–[(1-leak) product i=1 to n (bi? (1-pi): 1)] 

 Required:  0 ≤ pi ≤ 1     0 ≤ leak ≤ 1     e, bi boolean 

Use this distribution when there are several possible causes for an event, any of which can cause the event by itself, but only with 
a certain probability.  Also, the event can occur spontaneously (without any of the known causes being true), with probability  
leak  (make this zero if it can’t occur spontaneously). 

Each  bi  is a booleanvariable, which may cause the event when its TRUE.   e  is also a boolean, which indicates whether the 
event occurs.  Each of the  pi  are the probability that  e  will occur if  bi  is TRUE in isolation. 

If  leak  is zero, and only one possible cause is TRUE, say  bk, then the probability for  e  is  pk.  If more possible causes are 
TRUE, P(e) will be greater.  And if  leak  is nonzero, P(e) will be greater.  Reducing a pi always results in the same or lower 
P(e). 

pi can be considered the “strength” of the relation between e and bi, with zero indicating independence (link could be removed), 
and 1 indicating maximum effect.   See Pearl88, page 184 for more information (his qi  =  1 – pi).  See also NoisyAndDist. 

Example:   P (Effect | Cause1, Cause2) = NoisyOrDist (Effect, 0.1, Cause1, 0.2, Cause2, 0.4) 
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NormalDist (x, μ, σ)   = [1/(σ sqrt(2π))] exp (-[(x-μ)/σ]2 / 2) 

 Required:     σ > 0 

The normal (Gaussian) distribution of mean μ and standard deviation σ. 

The normal distribution, or approximations of it, arise frequently in nature (this is partly explained by the central limit theorem).  
Since it also has many convenient mathematical properties it is the most commonly used continuous distribution. 

For this distribution, 68.2% of the probability is within 1 standard deviation of the mean, 95.4% is within 2 standard deviations, 
and 99.74% is within 3 standard deviations. 

If μ = 0 and σ = 1, it is known as a “standard normal” distribution.  

ParetoDist (x, a, b)   = (a/b) (b/x) ^ (a+1) 

 Required:     a > 0    b > 0 

The Pareto distribution is a power law probability distribution found in a large number of real-world situations, such as the 
distribution of wealth among individuals, frequencies of words, size of particles, size of towns/cities, areas burnt in forest fires, 
size of some fractal features etc.  These are situations where there are many that are small and a few that are large (like the Pareto 
principle, in which 20% of the population owns 80% of the wealth). 

For any value of a, the distribution is "scale-free", which means that no matter what range of x one looks at, the proportion of 
small to large events is the same (i.e., the slope of the curve on any section of the log-log plot is the same).  

PoissonDist (k, μ)   = 
!

k

k
μ

  μ−e

 Required:     k ≥ 0      μ > 0      k is an integer 

If events occur by a Poisson process, then the number of events that occur in a fixed time interval is described by the Poisson 
distribution (where μ is the average number of events per unit time). 

round (x) = floor (x + 1/2) 

 where  x is an unrestricted real 

Rounds x to the nearest integer.  To round off to other quantities, use roundto. 

roundto (dx, x) = dx * floor ((x + dx/2) / dx) 

 where   dx > 0 

Rounds x to the nearest dx, which may be less than or greater than 1. 

For example, roundto(10,17) rounds 17 to the nearest 10, and so it returns 20. 

If dx = 1, then this is the same as the round function. 

select0 (index, x0, x1, ... xn) = xi s.t.  i == index 
select1 (index, x1, x2, ... xn) 
 where  index is integer, xi are all the same type  
  select0:  0 ≤ index < n 
  select1:  1 ≤ index ≤ n 

Returns the value of the x argument at position index:  xindex 

The first x argument is at index 0 if  select0  is used, and at index 1 if  select1  is used. 

Must be passed at least 2 arguments (index and an x).  See also:  member 

Example:  select0 (1, -6.6, 3.4, 1.26, 3.4)  returns 3.4 
  select1 (1, -6.6, 3.4, 1.26)       returns –6.6 
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sign (x) = (x > 0) ? 1 : (x < 0) ? -1 : 0 

 where  x is an unrestricted real 

Returns 1 if x is positive, -1 if x is negative, and 0 if x is zero.   See also:  abs 

SingleDist (k, c)  = (k == c) ? 1 : 0 

 Required:     k and c are integers 

The single point distribution indicates that k = c.  The probability that k is any other value is 0.  This is the discrete version of a 
Dirac delta. 

StudentTDist (x, ν)   = Γ((ν+1)/2) / [sqrt(ν pi)  Γ(ν/2) (1+x^2/ν)^((ν+1)/2) 

 Required:    ν > 0 

The t-distribution or Student's t-distribution arises in the problem of estimating the mean of a normally distributed population 
when the sample size is small. 

TriangularDist (x, m, w)   = (|x - a| > w) ? 0:   (w - |x - a|) / w2 

 Required:    w > 0 

The graph of this distribution has a triangular shape, with the highest point at x = a, and nonzero values only from  a - w  to a + 
w.  

Triangular3Dist (x, m, w1, w2)    

 Required:     w1 >= 0   w2 >= 0   w1 & w2 can't both be 0 

The pdf has a triangular shape, with the highest point at x = m, and nonzero value from m - w1 to m + w2.  

TriangularEnd3Dist (x, m, a, b)   
 Required:    a <= m    b >= m   b > a 

The pdf has a triangular shape, with the highest point at x = m, and nonzero value from a to b.  

UniformDist (x, a, b)   = 1 / (b - a) 

 Required:   a < b 

This is the distribution to use when the minimum and maximum possible values for a variable are known, but within that range 
there is no knowledge of which value is more likely than another.  It has a constant value from  x = a  to  x = b, and zero value 
outside this range.  

WeibullDist (x, α, β)   = (α/β) (x/β)α-1 exp (-(x/β)α) 

 Required:   α > 0     β > 0 

The Weibull distribution is often used for reliability models, since if the failure rate of an item (i.e., percent of the remaining ones 
which fail, as a function of time) is given as:  Z(t) = r tα-1, then the distribution of item lifetimes is given by the Weibull 
distribution with r = α / βα. 

xor (b1, b2, ... bn) = odd (NumberTrue (b1, b2, ... bn)) 

 where  bi are boolean 

Returns the exclusive-or of b1, b2 … bn. 

This is also known as the parity function, and will return true iff an odd number of bi evaluate to true.   See also:  and, or, not. 
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12 Functions by Category 

System 

Environ  constructor Initializes the Netica system 
Environ finalize Signals an end to using Netica system, and frees all possible resources 

(e.g. memory, close any open files) 
Environ g/setArgumentChecking Adjusts the amount that Netica functions check their arguments 
Environ getVersion/getVersionString Gets the software version of Netica currently running 
Environ g/setMemoryUsageLimit Adjusts the amount of memory that Netica can allocate for tables 
Environ g/setCaseFileDelimChar The symbol to separate data fields in case files created by Netica 
Environ g/setMissingDataChar The symbol indicating missing data in case files created by Netica 

Error Handling 

NeticaError getMessage Returns an error message for the given error report 
NeticaError isInCategory Indicates the nature of the error (out of memory, aborted, etc.) 
NeticaError getSeverity Returns the severity level of the given error report 
NeticaError getIdNumber Returns the error number of the given error report 
Environ g/setArgumentChecking Adjusts the amount that Netica functions check their arguments 

File Operations 

Streamer  constructor Creates a stream for the file with the given name 
Streamer constructor Creates a stream for reading and writing to buffers in memory 
Streamer finalize Closes files, frees resources and deletes either type of stream 
Streamer setPassword Sets a password to read or write encrypted files 
Environ g/setCaseFileDelimChar The symbol to separate data fields in case files created by Netica 
Environ g/setMissingDataChar The symbol indicating missing data in case files created by Netica 
Net write Saves a net to a file 
Net  constructor Reads a net from a file 
Net writeFindings Saves a net's current set of findings to a file 
Net readFindings Reads findings from a file, and enters into a net 
Caseset writeCases Writes all the cases to a file in CSV or UVF format 
Caseset addCases Makes the case-set object consist of the cases located in the file 
Net reviseCPTsByCaseFile Reads a file of cases to revise probabilities 
Net getFileName Name of file (with full path) that net was last written to or read from 
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Findings  (Evidence) 

Node finding().enterState Enters a discrete finding that a node is in a given state 
Node finding().enterStateNot Enters a discrete finding that a node is not in a given state 
Node finding().enterReal Enters a real number finding for a continuous node 
Node finding().enterLikelihood Enters a likelihood finding for a node (i.e. a soft finding) 
Node finding().enterGaussian Enters a finding given by a Gaussian (normal) distribution 
Node finding().enterInterval Enters a finding uniform over an interval, zero outside 
Node finding().setState Enters a discrete finding, overriding any previous entry 
Node finding().setReal Enters a real number finding, overriding any previous entry 
Node finding().getState Returns the finding for a node, if there is one 
Node finding().getReal Returns the real number finding entered for a continuous node 
Node finding().getLikelihood Returns the accumulated findings for a node, as a likelihood vector 
Node finding().getKind Returns what kind of finding was entered 
Node finding().clear Retracts all findings for a single node 
Net retractFindings Retracts all findings (i.e. the current case) from a net 
Net getFindingsProbability Returns the joint probability of the findings entered so far 

Compiling 

Net compile Compiles a net for fast belief updating 
Net uncompile Releases the resources (e.g., memory) used by a compiled net 
Net sizeCompiled The size and speed of the compiled net (i.e. of the junction tree) 
Net reportJunctionTree Returns a string describing the internal compiled junction tree 
Net g/setElimOrder The node order used to guide compilation 
Net g/setAutoUpdate Automatically propagate beliefs when findings are entered 
Node equationToTable Builds the CPT for a node based on the equation given to it 

Belief Updating and Inference 

Node getBeliefs Returns a node's current beliefs, doing belief updating if necessary 
Node getExpectedValue Expected value (and std dev) of a continuous or numeric-valued node 
Node getExpectedUtils Returns the expected utility of each choice in a decision node 
Node isBeliefUpdated Returns whether a node's beliefs have already been calculated to 

account for current findings 
Net g/setAutoUpdate Automatically propagate beliefs when findings are entered 
Net getJointProbability Returns a specified joint probability, given the findings entered 
Net getFindingsProbability Returns the joint probability of the findings entered so far 
Net getMostProbableConfig Finds the state for each node which results in the most probable 

explanation (MPE) 
Net generateRandomCase Creates a case sampled from the net, given the current findings 
Net absorbNodes Removes the given nodes while maintaining the joint distribution of the 

remaining nodes 
Sensitivity getMutualInfo Measures the mutual information between two nodes 
Sensitivity getVarianceOfReal Measures how much a finding at one node is expected to reduce the 

variance of another node 
Node calcState Returns the state of a node calculated from its neighbors, if that can be 

done deterministically 
Node calcValue Returns the numeric value of a node calculated from its neighbors, if 

that can be done deterministically 
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Learning From Data 

Net reviseCPTsByCaseFile Reads a file of cases to revise each node's probabilities 
Net reviseCPTsByFindings Uses the current case to revise probabilities 
Learner  constructor Creates a new object for use in learning CPTs from case data 
Learner finalize Deletes a learning object (learner) 
Learner learnCPTs Learn CPTs from case data, with choice of algorithm 
Learner g/setMaxIterations The maximum number of learning-step iterations (i.e., complete passes 

through the data) which will be done when the learner is used 
Learner g/setMaxTolerance The minimum change in data log likelihood between consecutive 

passes through the data, as a termination condition 
Node fadeCPTable Adjusts a node's probabilities for a changing world 
Node getCPTable Returns the results of learning 
Node getExperTable Determines how much experience was involved in the learning 
Node setCPTable Directly sets the probabilities (or starts them off) 
Node setExperTable Manually sets the amount of experience (or starts it off) 

Decision Nets 

Node getExpectedUtils Returns the expected utility of each choice in a decision node 
Node setKind Used to create decision nodes and utility nodes 

Node Lists 

NodeList  constructor Creates a new (empty) list of nodes 
NodeList add Inserts a node at the given position of a list, making it one longer 
NodeList remove Removes the node at the given index of a list, making it one shorter 
NodeList set Sets the Nth node of a list to a given node without changing length 
NodeList getNode Returns the Nth node of a list (the first node is numbered 0) 
NodeList indexOf Returns the position (index) of a node in a list, or -1 if it is not present 
NodeList size Returns the number of nodes in a list 
NodeList  copy constructor Duplicates a list of nodes 
NodeList clear Empties a node list without releasing the memory it uses 
NodeList finalize Frees the memory used by a list of nodes 
Net getNode Returns the node with the given name 
Net getNodes Returns a list of all the nodes in the net 
Node getParents Returns a list of the parents of a node 
Node getChildren Returns a list of the children of a node 
Node getRelatedNodes Finds all the nodes that bear a given relationship (such as D-connected, 

Markov blanket, ancestors, children, etc.) with a given node 
Net getRelatedNodes Finds the nodes that bear a given relationship with a given set of nodes 
NodeList mapStateList Change the order of a list of states to match a given node list 

Cases   (Sets of Findings) 

(see also "Findings") To enter a case into a net, and to read it out 
Net writeFindings Saves a net's current set of findings to a file 
Net readFindings Reads findings from a file, and enters into a net 
Net retractFindings Retracts all findings (i.e. the current case) from a net 
Net getFindingsProbability Returns the joint probability of the findings entered so far 
Net reviseCPTsByFindings The current case is used to revise each node's probabilities 
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Net reviseCPTsByCaseFile Reads a file of cases to revise probabilities 
Learner learnCPTs Learn CPTs from case data, with choice of algorithm 
Net generateRandomCase Generates a random case in a net, according to the net's distribution 
Caseset  constructor Creates a new case-set object, initially with no cases 
Caseset finalize Deletes and frees all resources used by a case-set object 
Caseset addCases Searches the given database, adding cases to a case-set object 
Caseset addCases Adds the cases located in the given case file 
Caseset writeCases Writes all the cases in the given case-set to a file stream 
NetTester testWithCaseset Performance tests a Bayes net with a set of cases 
NodeList mapStateList Change the order of a list of states to match a given node list 

Sensitivity to Findings   (Utility-Free Value of Information) 

Sensitivity  constructor Creates an object to measure sensitivity 
Sensitivity finalize Deletes the sensitivity measuring object 
Sensitivity getVarianceOfReal Measure the expected reduction in variance due to a finding 
Sensitivity getMutualInfo Measure the mutual information (entropy reduction) 

Performance Testing a Net 

NetTester  constructor Creates a new tester object, for given tests on given nodes 
NetTester finalize Deletes a tester object 
NetTester testWithCaseset Reads the cases one-by-one, and for each it does inference and grades 

the Netica net, gathering statistics 
NetTester getConfusion Returns a confusion matrix result of the testing 
NetTester getErrorRate Returns the error rate result of the testing 
NetTester getLogLoss Returns the logarithmic loss result of the testing 
NetTester getQuadraticLoss Returns the quadratic loss result of the testing 

Node-Sets 

Node addToNodeset Adds the given node to the node-set of the given name 
Node removeFromNodeset Removes the given node from the node-set of the given name 
Node isInNodeset Returns whether the given node is a member of the given node-set 
Net getNodesets Returns a list of all node-sets defined for this net, in priority order 
Net reorderNodesets Re-orders the node-sets as requested, for priority during display 
Net g/setNodesetColor Sets the color used to display nodes of a given node-set, and returns old 

Database Connectivity 

DatabaseManager  constructor Creates a new database manager object for a given database 
DatabaseManager  finalize Closes connection and deletes a database manager object 
DatabaseManager  insertFindings Adds the current findings in the net into the database as a case 
Caseset addCases Adds the cases (or a subset) in the database to a case-set object 
DatabaseManager executeSql Executes arbitrary SQL commands on the database 
DatabaseManager addNodes Adds to the given net nodes that match the variables in the database 

High-Level Net Modification 

See also “Learning from Data” 
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Node reverseLink Reverses a single link while maintaining joint probability 
Net absorbNodes Absorbs out (sum or max) some net nodes 
Node equationToTable Builds a node’s CPT or function table based on its equation 
Node switchParent Switches a link that comes from some node to come from a different 

node, without changing the child node or its tables 
Net duplicateNodes Duplicates each node in a list, putting them in the same or a new net 
Net copy constructor Duplicate a whole net (with options to skip tables, etc.) 
Net undoLastOperation Undoes the last operation done to a net 
Net redoOperation Call this to re-do an operation that was undone 

Low-Level Net Modification 

See also “Equations”, “Tables”, “Visual Display” , “Node-Sets” and “User Data Fields” 
Net constructor Creates a new empty net 
Net finalize Frees all memory used by a net and all its substructures 
Net setName Changes the name of the net 
Net setAutoUpdate Changes whether a node does belief updating immediately 
Net setElimOrder Provides the elimination order to be used for the next compilation 
Net setTitle Sets the string used to title a net 
Net setComment Attaches a comment string to the net 
Net addListener Attaches a callback for when nodes get created, removed, etc. 
 
Node  constructor Creates a new node for a given net 
Node delete Removes a node from its net, and frees the memory it required 
Net duplicateNodes Duplicates each node in a list, putting them in same or new net 
DatabaseManager addNodes Adds to the given net nodes that match the variables in the database 
Node setName Changes the name of a node 
Node setTitle Sets the string used to title a node 
Node setComment Attaches a comment string to the node 
Node setKind Changes whether the node is a nature, decision, utility, etc. node 
Node state().setName Provides a name for a state of the node 
Node setStateNames Name all the states of a node at once with a comma-delimited string 
Node state().setTitle Set the title of a state of the node 
Node state().setComment Attach a comment to the state of a node 
Node setLevels Sets threshold numbers for continuous / discrete conversion 
Node state().setNumeric Sets a real number for a state of a discrete node 
Node setInputName Sets the link’s name (to be used by the child node in its equation) 
Node addStates Insert one or more states into a node’s list of states 
Node state().delete Remove a state from a node 
Node reorderStates Change the order of a node’s states 
Node addLink Adds a link from one node to another 
Node deleteLink Removes a link from one node to another 
Node switchParent Switches a link that comes from some node to come from a different 

node, without changing the child node or its tables 
Node addListener Attaches a callback for when nodes get created, removed, etc. 

Retrieving Net Information 

See also “Equations”, “Tables”, “Visual Display” , “Node-Sets” and “User Data Fields” 
Net getName Returns the name of the net 
Net getTitle Returns the string which is the net's title 
Net getComment Returns the comment associated with the net 
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Net getNodes Returns a list of all the nodes in a net 
Net getNode Returns the node having the given name from the net 
Net getFileName Name of file (with full path) that net was last written to or read from 
Net getAutoUpdate Returns whether the net does belief updating immediately 
Net getElimOrder Returns a list of the elimination order used for compiling 

(triangulation) 
Environ getNthNet Can be used to return all the nets in the Netica environ, one-by-one 
Node getNet Returns the net containing the given node 
Node getName Returns the name of the given node 
Node getTitle Returns the string titling the node 
Node getComment Returns a comment string for the node 
Node getType Returns whether the node is for a discrete or continuous variable 
Node getKind Returns whether the node is a nature, decision, utility, etc. node 
Node getNumStates Returns the number of states node can take on 
Node state().getName Returns the name of the given state 
Node state().getIndex Returns the state number of the state with the given name 
Node state().getTitle  Returns the title of the given state 
Node state().getComment  Returns the comment of the given state 
Node getLevels Returns threshold numbers for continuous / discrete conversion 
Node state().getNumeric Returns the real number associated with a state of a discrete node 
Node getInputIndex Returns the parent index of the link with the given name 
Node getParents Returns a node list of the parents of the node 
Node getChildren Returns a node list of the children of the node 
Node isRelated Checks if a node has a given graphical relationship (such as D-

connected, Markov blanket, ancestors, children, etc.) with another node 
Node getRelatedNodes Finds all the nodes that bear a given relationship with a given node 
Net getRelatedNodes Finds the nodes that bear a given relationship with a given set of nodes 

Equations 

Node g/setEquation Set a node’s equation (expressing the node’s value or CPT as a function 
of its parent nodes) 

Node equationToTable Builds the node’s function or CPT table from its equation 
Node g/setInputName Defines a name for a link (to be used by the node’s equation instead of 

the parent node’s name) 
Node calcState Calculates, if possible, the state of a node, based on its deterministic 

equation or table, and findings at its neighbor nodes 
Node calcValue Calculates, if possible, the numerical value of a node, based on its 

deterministic equation or table, and findings at its neighbor nodes 

Tables 

Node g/setCPTable The conditional probability of the node given its parent’s values 
Node g/setExperTable Experience quantities indicating how much data was used to learn each 

row of the CPTable 
Node g/setStateFuncTable Function table of a discrete deterministic node 
Node g/setRealFuncTable Function table of a continuous deterministic node 
Node deleteTables Removes a node's function, probability, and experience tables 
Node hasTable Whether the node has a CPT table or function table 
Node isDeterministic Discovers if the node is a deterministic function of its parents 
NodeList mapStateList Useful for getting states in correct order to access a table 
Node equationToTable Builds table from equation 
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Learner learnCPTs Performs learning of CPT tables from data 
Net reviseCPTsByFindings Modify CPTs by learning from a single case 
Net reviseCPTsByCaseFile Modify CPTs by learning from cases 
Node fadeCPTable Increase uncertainty in CPT table to account for passage of  time 

Visual Display 

Node visual().g/setStyle The style to draw the node in Netica Application 
Node visual().g/setPosition The coordinates of the center of the node in the Netica Application 

User Data Fields 

These are also all repeated for the  Net  object: 
Node user().g/setNumber Attaches a named-field number to the node, that gets saved to file 
Node user().g/setString Attaches a named-field string to the node, that gets saved to file 
Node user().g/setObject Attaches a named-field Serializable object to the node, that gets saved 

to file 
Node user().g/setBytes Attaches a named-field blob to the node, that gets saved to file 
Node user().removeField Removes one of the named fields of the node 
Node user().getNthFieldName Retrieves field-by-field info from the node by index 
Node user().g/setReference Attaches a single arbitrary data object to the node (not saved to file) 
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13 Index 

Symbols 

# for state index · 35 
* in case file · 35 
* in UVF file · 42 
? in case file · 35 
 [a,b] in UVF file · 40 
_Bernoulli Function (eqn function) · 89 
{…} in UVF file · 41 
~{…} in UVF file · 41, 42 
~->[CASE-1]->~ · 35 
+- in UVF file · 40 
> in UVF file · 40 

A 

absorbNodes()  Net · 61 
Access, Microsoft · 38 
accuracy of net · 53 
adaptive learning · 52 
addCases()  Caseset · 34, 37, 38, 39 

in use ∙ 39, 54 
addLink()  Node · 27, 56 

in use ∙ 59, 64 
addListener()  Net and Node · 17 
addNodes()  DatabaseManager · 39 
address of Norsys · 2 
addStates()  Node · 56 
agent modeling · 56 
ancestor nodes 

found by getRelatedNodes() ∙ 72 
announcement list · 12 
append, passed to getRelatedNodes() · 72 
approx_eq (eqn function) · 88 
arc · See ‘link’ 
argmax0 (eqn function) · 88 
argmax1 (eqn function) · 88 
argmin0 (eqn function) · 89 
argmin1 (eqn function) · 89 
asterisk · 35 
attribute-value · 35 
auto-updating · 33 

B 

Bayes net · 5 
adaptive ∙ 52 
learning ∙ 43 

Bayes net libraries · 57 
Bayes net online library · 13, 25 
Bayesian network · 5, 19 
BBN · 19 
belief · 20 
belief functions · 46 
belief network · 5, 19 
belief updating · 20, 21, 23 
belief vector · 34 
Bernoulli distribution (eqn function) · 89 
BernoulliDist (eqn function) · 89 
beta (eqn function) · 89 
beta distribution (eqn function) · 89 
beta function · 47 
Beta4Dist (eqn function) · 89 
BetaDist (eqn function) · 89 
bin directory · 10 
binary net files · 30 
binomial (eqn function) · 89 
binomial distribution (eqn function) · 89 
binomial experiment · 90 
BinomialDist (eqn function) · 89 
BN · 19 
BreastCancer.cas file · 9 
BreastCancer.dne file · 9 
bug report email address · 12 
building Bayes nets · 19 
BuildNet.java file · 9 
built-in constants for equations · 85 
built-in functions for equations · 85 
built-in operators for equations · 85 

C 

C# · 5 
calcState() · 77 
calcValue() · 77 
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case · 34 
identification number ∙ 35 

case file · 34 
comments ∙ 35 
creating ∙ 34 
example ∙ 36 
format ∙ 35 
uncertain findings in ∙ 39 

CASE-1 in case file · 35 
case-set · 37 
Caseset class · 37 
Caseset()  constructor · 37 

in use ∙ 39, 54 
Cauchy distribution (eqn function) · 90 
CauchyDist (eqn function) · 90 
causal network · 19 
chance node · 63 
ChestClinic example net 

diagram ∙ 22 
DNET file ∙ 28 

ChestClinic.cas file · 9 
ChestClinic.dne file · 9 
ChestClinic_WithVisuals.dne file · 9 
chi square distribution (eqn function) · 90 
child nodes · 20 
children, found by getRelatedNodes() · 72 
ChiSquareDist (eqn function) · 90 
classification · 6, 43 
ClassifyData.java file · 9 
clear()  Node Value 

in use ∙ 33 
clip (eqn function) · 90 
clique tree · 21 
Cobol · 5 
combining nets · 56 
comments · 27 
compile()  Net · 23 

in use ∙ 22, 36 
compile.bat file · 9 
compiling vs. node absorption · 61 
complete uncertainty in UVF file · 42 
conditionals in equation · 80 
confidence · 46 
confusion matrix · 53 
conjugate gradient descent · 46 
connected nodes 

found by getRelatedNodes() ∙ 72 
connecting with a database · 38 
consistent findings · 33 
constant node · 83 
constant node as parameter in equation · 83 
context node · 60 
continuous variable 

in case file ∙ 37 
undiscretized ∙ 21 

copyNodes()  Net 
in use ∙ 59 

copyright notice · 2 
counting learning · 44 
counting learning algorithm · 47 
creation-of-node callback · 17 
CSV file · 34 

D 

d_connected, found by getRelatedNodes() · 72 
database 

connecting to ∙ 38 
extracting cases from ∙ 38 
of cases ∙ 34 

DatabaseManager()  constructor · 38 
in use ∙ 39 

date of manual · 2 
DBNs · 6 
decision analysis · 6 
decision net · 5, 63 

solving by node absorption ∙ 62 
decision node · 63 
delete()  Node · 56 
delete()  Node State · 56 
deleteLink()  Node · 56 
deleteTables()  Node 

in use ∙ 49 
Delphi · 5 
demo directory · 10 
Demo program, running · 10 
Demo.java file · 9 
Dempster-Shafer · 46 
dependence 

degree of ∙ 74 
finding ∙ 72 

descendent nodes 
found by getRelatedNodes() ∙ 72 

deterministic equation · 78 
deterministic propagation · 77 
diagnosis · 6, 43 

most informative test ∙ 75 
directory structure of distro · 10 
Dirichlet distribution · 47 
Dirichlet distribution (eqn function) · 93 
disclaimer · 2 
disconnected link · 58 
discretization 

avoiding ∙ 77 
DiscUniformDist (eqn function) · 90 
display of nodes · 57 
DNE file format · 13 
DNET files · 25, 28 
DNET_File_Format.txt file · 13 
docs directory · 10 
DoInference.java example program · 22 
DoInference.java file · 9 
double exponential (eqn function) · 92 
Drawing Balls example · 46 
drawing nodes and nets · 67 
DrawNet.java example program · 67 
DrawNet.java file · 9 
duplicate() · 59 
dynamic Bayes nets · 6 

E 

Eclipse development system · 11 
efficiency · 21 
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elimination order · 21 
EM learning · 51 

algorithm ∙ 46 
when to use ∙ 44 

EM_LEARNING 
in use ∙ 51 

email address · 5 
embedded systems · 6 
encrypting Bayes net · 30 
entering findings · 33 
enterLikelihood()  Node Value 

in use ∙ 33 
enterState()  Node Value · 24 

in use ∙ 22, 33 
enterStateNot()  Node Value 

in use ∙ 33 
Environ()  constructor · 8, 23 

in use ∙ 22 
eqnear (eqn function) · 90 
equation · 77 

built‐in constants ∙ 85 
built‐in functions ∙ 85 
built‐in operators ∙ 85 
comparison with Java/C ∙ 79 
conditional statements ∙ 80 
constant node as parameter ∙ 83 
deterministic ∙ 78 
examples ∙ 77, 84 
input names ∙ 82 
left‐hand side ∙ 78 
link names ∙ 82 
probabilistic ∙ 78 
referring to discrete states ∙ 82 
right‐hand side ∙ 79 
syntax ∙ 78 
tips ∙ 83 
using to build table ∙ 81 

equationToTable() · 77, 81 
erf (eqn function) · 90 
erfc (eqn function) · 90 
error rate · 53 
ERROR_ERR · 16 
ess · 47 
estimated sample size · 47 
event handling · 17 
evidence · See ‘findings’ 
example Bayes nets · 25 
example DNET file · 28 
example program 

building decision net ∙ 64 
displaying a Bayes net graphically ∙ 67 
DoInference.java ∙ 22 
DrawNet.java ∙ 67 
entering findings ∙ 33 
LearnCPTs.java ∙ 49 
learning probabilities ∙ 49 
MakeDecision.java ∙ 64 
NetTester.java ∙ 54 
node library ∙ 59 
probabilistic inference ∙ 21 
SimulateCases.java ∙ 36 
solving decision problem ∙ 64 

examples directory · 10 
exception handling · 16 
exclude_self, passed to getRelatedNodes() · 72 
executeSQL()  DatabaseManager · 38 
exhaustive · 27 
experience · 47 
explaining away · 24 
exponential distribution (eqn function) · 90 
ExponentialDist (eqn function) · 90 
extreme value distribution (eqn function) · 91 
ExtremeValueDist (eqn function) · 91 

F 

factorial (eqn function) · 91 
fadeCPTable() · 52 
fadeCPTable()  Node · 52 
fading · 52 
FDist (eqn function) · 91 
F-distribution (eqn function) · 91 
feature list · 6 
file format 

case file ∙ 35 
DNE Bayes net ∙ 13 

files provided in distro · 9 
finalize() · 18 
finalize()  Caseset · 38 
finalize()  Environ 

in use ∙ 22 
finalize()  Net 

in use ∙ 22, 36, 64 
finalize() Sensitivity · 75 
finalizers · 18 
finding · 20 

consistency ∙ 33 
entering ∙ 33 
likelihood ∙ 32 
negative ∙ 32 
positive ∙ 32 
sets of ∙ 34 
soft ∙ 32 

findings node · 60 
FIRST_CASE 

in use ∙ 49 
Fisher-Snedecor distribution (eqn function) · 91 
Fisher-Tippet distribution (eqn function) · 91 
Flow Instrument example · 58 
for n/N conditions, no … warning message · 80 
formula · See equation 
Fortran · 5 
forward sampling · 21 
F-ratio distribution (eqn function) · 91 
frequency of cases · 35 
functionality · 6 
fuzzy logic · 46 

G 

gamma (eqn function) · 91 
gamma distribution (eqn function) · 91 
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GammaDist (eqn function) · 91 
Gaussian in UVF file · 40 
generateRandomCase()  Net · 21, 76, 77 

in use ∙ 36 
geometric distribution (eqn function) · 91 
GeometricDist (eqn function) · 91 
getBelief()  Node · 23 

in use ∙ 22 
getBeliefs()  Node 

in use ∙ 33 
getBytes()  User · 74 
getConfusion()  NetTester · 53 

in use ∙ 54 
getErrorRate()  NetTester · 53 

in use ∙ 54 
getExpectedUtils()  Node · 66 

in use ∙ 64 
getInputIndex()  Node 

in use ∙ 59 
getLikelihood()  Node Value 

in use ∙ 33 
getLogLoss()  NetTester · 53 

in use ∙ 54 
getMutualInfo()  Sensitivity · 75 
getNodes()  Net 

in use ∙ 36, 49 
getNthFieldName()  User · 74 
getNumber()  User · 74 
getObject()  User · 74 
getQuadraticLoss()  NetTester · 53 
getReference()  User · 73 
getRelatedNodes() · 72 
getRelatedNodes() for a group of nodes · 73 
getState()  Node Value · 34 

in use ∙ 33 
getStateFuncTable()  Node · 66 

in use ∙ 64 
getString()  User · 74 
getVarianceOfReal()  Sensitivity · 75 
gradient descent learning 

algorithm ∙ 46 
when to use ∙ 44 

graph algorithms · 72 
graphical model · 5, 19 
graphical user interface · 5 

H 

Hugin · 11 
hypergeometric distribution (eqn function) · 92 
HypergeometricDist (eqn function) · 92 

I 

IDE installation · 11 
ideas for improvement · 12 
IDname · 27 
IDnum · 35 
ignorance · 46 
include_evidence_nodes, passed to getRelatedNodes() · 72 

increasing (eqn function) · 92 
increasing_eq (eqn function) · 92 
independence 

degree of ∙ 74 
finding ∙ 72 

independent finding · 32 
influence diagram · 5, 63 
influence, degree of · 74 
inheriting from Node or Net · 16 
input names in equation · 82 
input/output done by Netica API · 6 
insertFindings()  DatabaseManager · 38 
installing Netica-J · 10 
Instrument example · 58 
intersection, passed to getRelatedNodes() · 72 
interval in UVF file · 40 
isRelated()  Node · 73 

J 

Java · 5 
Java version required · 10 
javadocs · 9, 11 
join tree · See junction tree 
junction tree · 21 

versus node absorption ∙ 21 

K 

knowledge base · 19 

L 

Laplace distribution (eqn function) · 92 
LaplaceDist (eqn function) · 92 
large nets 

too big to compile ∙ 21 
latent variable · 44 
layout of nodes · 57 
learnCPTs()  Learner · 51 

in use ∙ 39, 51 
LearnCPTs.java example program · 49 
LearnCPTs.java file · 9 
Learner()  constructor · 51 

in use ∙ 39 
learning 

adaptive ∙ 52 
Bayes nets ∙ 43 
from cases ∙ 43 
parameter ∙ 43 
structure ∙ 43 

learning algorithms · 44 
learning nodes · 44 
LearnLatent.cas file · 9 
LearnLatent.java file · 9 
left-hand side of equation · 78 
legal disclaimer · 2 
libNeticaJ.jnilib · 9 
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libNeticaJ.so · 9 
libraries 

Bayes net ∙ 19, 57 
node ∙ 57 

license agreement · 8 
License Agreement.pdf file · 8, 9 
license for other languages · 8 
license password · 8 
likelihood 

in case file ∙ 44 
in UVF file ∙ 41 

likelihood finding · 32, See also ‘soft finding’ 
not independent ∙ 33 

likelihood vector · 33 
link 

adding ∙ 27 
link name · 58 

in equation ∙ 82 
links · 20 
Linux · 6 
Lisp · 5 
lists of nodes · 72 
log likelihood during learning · 45 
logarithmic distribution (eqn function) · 92 
logarithmic loss · 53 
logarithmic series distribution (eqn function) · 92 
LogarithmicDist (eqn function) · 92 
logfactorial (eqn function) · 92 
loggamma (eqn function) · 92 
lognormal distribution (eqn function) · 92 
LognormalDist (eqn function) · 92 
log-Weibull distribution (eqn function) · 91 

M 

Macintosh · 6 
MakeDecision.java example program · 64 
MakeDecision.java file · 9 
markov_boundary, found by getRelatedNodes() · 72 
Matlab · 5 
max (eqn function) · 93 
maximizing expected utility · 63 
maximum likelihood learning · 45 
medical domain · 19, 21 
member (eqn function) · 93 
memory required · 21 
min (eqn function) · 93 
missing data · 35, 44, 47 
missing state, reading case · 35 
modeling agents · 56 
modifying nets · 56 
most informative test · 75 
MS Access · 38 
MS SQL Server · 38 
MS Windows · 6 
multinomial (eqn function) · 93 
multinomial distribution (eqn function) · 93 
MultinomialDist (eqn function) · 93 
multiplicity of cases · 35 
multithreading · 6, 17 
mutual information · 75 
mutually exclusive · 27 

MySQL database · 38 

N 

NAME_MAX  General · 27 
names · 27 
native objects and code · 15 
nature node · 63 
nearest0 (eqn function) · 93 
nearest1 (eqn function) · 93 
negative binomial distribution (eqn function) · 94 
negative finding · 32 
negative likelihood in UVF file · 42 
NegBinomialDist (eqn function) · 94 
net library · 13 
net reduction · 60 
Net()  constructor · 23, 27 

for new library ∙ 58 
in use ∙ 22, 59, 64 
in use to read file ∙ 59 

Net.java file · 9, 15 
NETA file format · 30 
NetEx.java file · 9, 15 
Netica API · 5 
Netica Application · 5, 13, 25 

website ∙ 13 
Netica.dll · 9 
NeticaEx · 14 
NeticaException class · 16 
Netica-J · 5 
NeticaJ.dll · 9 
NeticaJ.jar · 9 
NeticaJ_Man.pdf file · 9 
NetPanel  constructor 

in use ∙ 67 
NetTester()  constructor · 53 

in use ∙ 54 
NetTester.java example program · 54 
NetViewer.java file · 9 
neural networks · 46 
NEXT_CASE 

in use ∙ 49 
NO_MORE_CASES 

in use ∙ 49 
node · 20 
node absorption · 60, 61 
node libraries · 57 
node library example program · 59 
node lists · 72 
Node()  constructor · 27, 56 

in use ∙ 59, 64 
Node.java file · 9, 15 
Node.visual().setPosition() · 57 
Node.visual().setStyle() · 57 
NodeEx.java file · 9 
NodeEx.java file · 15 
NodeList class · 72 
Nodelist.java file · 9, 15 
NodeListEx.java file · 9, 15 
NodePanel class · 67 
noisy-and distribution (eqn function) · 94 
NoisyAndDist (eqn function) · 94 
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noisy-max distribution (eqn function) · 94 
NoisyMaxDist (eqn function) · 94 
noisy-or distribution (eqn function) · 94 
NoisyOrDist (eqn function) · 94 
noisy-sum distribution (eqn function) · 94 
NoisySumDist (eqn function) · 94 
normal distribution (eqn function) · 95 
NormalDist (eqn function) · 95 
Norsys address · 2 
NumCases column in case file · 35 

O 

old versions of Netica-J · 10 
optimal decisions · 63 
Oracle database · 38 
other state, reading case · 35 

P 

parameter learning · 43 
parent nodes · 20 
parents, found by getRelatedNodes() · 72 
Pareto distribution (eqn function) · 95 
ParetoDist (eqn function) · 95 
Pascal · 5 
performance testing · 53 
Perl · 5 
platforms · 6 
Poisson distribution (eqn function) · 95 
Poisson process · 91 
PoissonDist (eqn function) · 95 
positive finding · 32 
posterior probabilities · 20 
prediction · 6, 43 
preference utilities · 57 
preprocessing input data · 77 
printConfusionMatrix() 

in use ∙ 54 
prior probabilities · 20 
probabilistic causal models · 5 
probabilistic causal network · 19 
probabilistic equation · 78 
probabilistic inference · 20 

by node absorption ∙ 61 
example program ∙ 21 

probability as a measure of uncertainty · 46 
probability revision · 20 
Prolog · 5 

Q 

quadratic loss · 53 
quality assurance · 6 
question, finding best · 75 
questions email address · 12 

R 

random case generation · 76 
readFindings()  Net · 40 

in use ∙ 49 
reduction in entropy · 75 
referring to discrete states in equation · 82 
regression testing · 6 
relations (structural) between nodes · 73 
removeField()  User · 74 
reorderStates()  Node · 56 
resources for Netica · 13 
retractFindings()  Net 

in use ∙ 36, 49 
reverseLink()  Node · 61 
reviseCPTsByCaseFile()  Net · 48 

in use ∙ 49 
reviseCPTsByFindings()  Net · 48, 49 
right-hand side of equation · 79 
risk analysis · 6 
round (eqn function) · 95 
roundto (eqn function) · 95 
run.bat file · 9 

S 

sampling · 21 
second order probabilities · 47 
select0 (eqn function) · 95 
select1 (eqn function) · 95 
Sensitivity document · 76 
sensitivity to findings · 74 
Sensitivity()  constructor · 75 
sensor fusion · 6 
set of cases · 37 
set of impossibilities in UVF file · 41 
set of possibilities in UVF file · 41 
setBytes()  User · 74 
setConstructorClass()  Net and Node · 16 
setCPTable()  Node · 28 

in use ∙ 64 
setCPTable()  NodeEx · 28 
setExperTable()  Node · 47 
setKind()  Node · 56, 83 

in use ∙ 64 
setMaxIterations()  Learner · 51 
setMaxTolerance()  Learner · 51 

in use ∙ 51 
setNumber()  User · 74 
setObject()  User · 74 
setPassword()  Streamer · 30 
setRealFuncTable()  Node 

in use ∙ 64 
setReference()  User · 73 
sets of nodes · 72 
setStateNames()  Node · 27 

in use ∙ 64 
setString()  User · 74 
sign (eqn function) · 96 
SimulateCases.java example program · 36 
SimulateCases.java file · 9 
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simulation · 76 
single distribution (eqn function) · 96 
SingleDist (eqn function) · 96 
Snedecor distribution (eqn function) · 91 
soft finding · 32, See also ‘likelihood finding’ 

in case file ∙ 44 
spreadsheet program · 34 
SQL Server, MS database · 38 
src directory · 10 
src/neticaEx/aliases/ directory · 17 
standard normal (eqn function) · 95 
state name · 35 
statistics of net · 53 
stopping criterion for learning · 45 
structural relations between nodes · 73 
structure learning · 43 
student-t distribution (eqn function) · 96 
StudentTDist (eqn function) · 96 
style of nodes · 57 
subtract, passed to getRelatedNodes() · 72 
support email address · 12 
switchParent()  Node · 58 

in use ∙ 59 

T 

tab-delimited text file · 34 
table too big · 81 
target node · 43, 60, 75 
target node, sensitivity · 75 
templates · 19 
termination condition for learning · 45 
test cases · 53 
test data · See test cases 
test nodes · 53 
test, finding best · 75 
testing performance of net · 53 
TestNet.java file · 9 
testWithCaseset()  NetTester · 53 

in use ∙ 54 
threadsafe · 6 
titles · 27 
trademark notices · 2 
training cases · 43, 53 
training data · See training cases 
triangular distribution (eqn function) · 96 
Triangular3Dist (eqn function) · 96 
TriangularDist (eqn function) · 96 
TriangularEnd3Dist (eqn function) · 96 

U 

Umbrella example · 63 
unbounded interval in UVF file · 40 
uncertain findings in case file · 39 
uncertainty · 46 

Unicode · 27 
uniform distribution (eqn function) · 90, 96 
UniformDist (eqn function) · 96 
union, passed to getRelatedNodes() · 72 
unobserved nodes · 53 
upgrades website · 12 
upgrading Netica API · 8 
user-defined data · 73 
user-defined fields · 74 

integers ∙ 74 
numbers ∙ 74 
strings ∙ 74 

UTF-16 · 27 
utility node · 63 
UVF file · 39 

complete uncertainty ∙ 42 
Gaussian ∙ 40 
interval ∙ 40 
likelihood ∙ 41 
negative likelihood ∙ 42 
set of impossibilities ∙ 41 
set of possibilities ∙ 41 
unbounded interval ∙ 40 

V 

value node · 63 
variable · 20 
variance due to findings · 75 
variance-ratio distribution (eqn function) · 91 
varying node · 75 
version number of license · 8 
virtual evidence · See ‘soft finding’ 
Visual Basic · 5 

W 

WARNING_ERR · 16 
Weather example · 57 
Weibull distribution (eqn function) · 96 
WeibullDist (eqn function) · 96 
wild state, reading case · 35 
Windows · 6 
write()  Net · 28, 30 

in use ∙ 59 
writeCases()  Caseset · 38 
writeFindings()  Net 

in use ∙ 36 

X 

xor (eqn function) · 96 
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